@phdthesis{Sobal2003, author = {Sobal, Neli}, title = {Kolloidale Nanosysteme aus magnetischen und metallischen Materialien : Synthese und Charakterisierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001071}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Ein Spezialgebiet der modernen Mikroelektronik ist die Miniaturisierung und Entwicklung von neuen nanostrukturierten und Komposit-Materialen aus 3d-Metallen. Durch geeignete Zusammensetzungen k{\"o}nnen diese sowohl mit einer hohen S{\"a}ttigungsmagnetisierung und Koerzitivfeldst{\"a}rke als mit besserer Oxidationsbest{\"a}ndigkeit im Vergleich zu den reinen Elementen erzielt werden. In der vorliegenden Arbeit werden neue Methoden f{\"u}r die Herstellung von bimetallischen kolloidalen Nanopartikeln vor allem mit einer Kern-H{\"u}lle-Struktur (Kern@H{\"u}lle) pr{\"a}sentiert. Bei der {\"u}berwiegenden Zahl der vorgestellten Reaktionen handelt es sich um die thermische Zersetzung von metallorganischen Verbindungen wie Kobaltcarbonyl, Palladium- und Platinacetylacetonate oder die chemische Reduktion von Metallsalze mit langkettigem Alkohol in organischem L{\"o}sungsmittel. Daneben sind auch Kombinationen aus diesen beiden Verfahren beschrieben. Es wurden Kolloide aus einem reinen Edelmetall (Pt, Pd, Ag) in einem organischen L{\"o}sungsmittel synthetisiert und daraus neue, bisher in dieser Form nicht bekannte Ag@Co-, Pt@Co-, Pd@Co- und Pt@Pd@Co-Nanopartikel gewonnen. Der Kobaltgehalt der Ag@Co-, Teilchen konnte im Bereich von 5 bis 73 At. \% beliebig eingestellt werden. Der mittlere Durchmesser der Ag@Co-Partikel wurde von 5 nm bis 15 nm variiert. Bei der Herstellung von Pt@Co-Teilchen wurde eine unterschiedlich dicke Kobalt-H{\"u}lle von ca. 1,0 bis 2,5 nm erzielt. Im Fall des Palladiums wurden sowohl monodispere als auch polydisperse Pd-Nanopartikel mit einer maximal 1,7-2,0nm dicken Kobalth{\"u}lle synthetisiert. Ein großer Teil dieser Arbeit befasst sich mit den magnetischen Eigenschaften der kolloidalen Teilchen, wobei die SQUID-Magnetometrie und R{\"o}ntgenzirkulardichroismus (XMCD) daf{\"u}r eingesetzt wurden. Weil magnetische Messungen alleine nur indirekte Schl{\"u}sse {\"u}ber die untersuchten Systeme erlauben, wurde dabei besonderer Wert auf die m{\"o}glichst genaue strukturelle Charakterisierung der Proben mittels moderner Untersuchungsmethoden gelegt. R{\"o}ntgendiffraktometrie (XRD), R{\"o}ntgenabsorptionsfeinstruktur- (EXAFS) und UV-Vis-Spektroskopie sowie Transmissionselektronenmikroskopie (TEM) in Kombination mit Elektronen Energieverlustspektroskopie (EELS) und energiedispersive R{\"o}ntgenfluoreszensanalyse (EDX) wurden verwendet.}, language = {de} } @phdthesis{Groenewolt2004, author = {Groenewolt, Matthijs}, title = {Mesostrukturierte Materialien durch Neue Templatsysteme und Nutzung Mesopor{\"o}ser Silikate als Nano-Reaktoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2515}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {In dieser Arbeit wird ein chemisches Abgussverfahren f{\"u}r selbstorganisierte Strukturen in L{\"o}sung verwendet, das es erm{\"o}glicht definierte por{\"o}se Materialien mit Strukturierung auf der Nanometerskala herzustellen. {\"A}hnlich wie beim Gussverfahren von Werkst{\"u}cken wird die Vorlage durch ein geeignetes Material abgebildet. Durch Entfernen dieser Vorlage erh{\"a}lt man ein por{\"o}ses (mit Hohlr{\"a}umen durchsetztes) Negativ derselben. Die auf diese Weise erhaltenen Materialien sind in mehrerer Hinsicht interessant: So lassen sich aus ihrer Morphologie R{\"u}ckschl{\"u}sse {\"u}ber die Natur der selbstorganisierten Strukturen erhalten, da der hier verwendete Abbildungsprozess selbst kleinste strukturelle Details erfasst. Die Hohlr{\"a}ume der synthetisierten por{\"o}sen Stoffe hingegen k{\"o}nnen als winzige Reaktionsgef{\"a}ße, sogenannte \"Nano-Reaktoren\" verwendet werden. Dies erm{\"o}glicht sowohl die Synthese von Nano-Partikeln, die auf anderem Wege nicht zug{\"a}nglich sind, als auch die M{\"o}glichkeit Einfl{\"u}sse der r{\"a}umlichen Restriktion auf die Reaktion zu untersuchen. Besonders r{\"a}umlich ausgedehnte Strukturen sollten hierbei Auff{\"a}lligkeiten zeigen. Somit ist die Gliederung der Arbeit vorgegeben: - Die Herstellung und Charakterisierung von por{\"o}sen Stoffen und selbstorganisierten Strukturen - Ihre Verwendung als \"Nano-Reaktor\"}, subject = {Nanopartikel}, language = {de} } @phdthesis{Kraupner2011, author = {Kraupner, Alexander}, title = {Neuartige Synthese magnetischer Nanostrukturen: Metallcarbide und Metallnitride der {\"U}bergangsmetalle Fe/Co/Ni}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52314}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Magnetische Nanopartikel bieten ein großes Potential, da sie einerseits die Eigenschaften ihrer Bulk-Materialien besitzen und anderseits, auf Grund ihrer Gr{\"o}ße, {\"u}ber komplett unterschiedliche magnetische Eigenschaften verf{\"u}gen k{\"o}nnen; Superparamagnetismus ist eine dieser Eigenschaften. Die meisten etablierten Anwendungen magnetischer Nanopartikel basieren heutzutage auf Eisenoxiden. Diese bieten gute magnetische Eigenschaften, sind chemisch relativ stabil, ungiftig und lassen sich auf vielen Synthesewegen relativ einfach herstellen. Die magnetischen Eigenschaften der Eisenoxide sind materialabh{\"a}ngig aber begrenzt, weshalb nach anderen Verbindungen mit besseren Eigenschaften gesucht werden muss. Eisencarbid (Fe3C) kann eine dieser Verbindungen sein. Dieses besitzt vergleichbare positive Eigenschaften wie Eisenoxid, jedoch viel bessere magnetische Eigenschaften, speziell eine h{\"o}here S{\"a}ttigungsmagnetisierung. Bis jetzt wurde Fe3C haupts{\"a}chlich in Gasphasenabscheidungsprozessen synthetisiert oder als Nebenprodukt bei der Synthese von Kohlenstoffstrukturen gefunden. Eine Methode, mit der gezielt Fe3C-Nanopartikel und andere Metallcarbide synthetisiert werden k{\"o}nnen, ist die „Harnstoff-Glas-Route". Neben den Metallcarbiden k{\"o}nnen mit dieser Methode auch die entsprechenden Metallnitride synthetisiert werden, was die breite Anwendbarkeit der Methode unterstreicht. Die „Harnstoff-Glas-Route" ist eine Kombination eines Sol-Gel-Prozesses mit einer anschließenden carbothermalen Reduktion/Nitridierung bei h{\"o}heren Temperaturen. Sie bietet den Vorteil einer einfachen und schnellen Synthese verschiedener Metallcarbide/nitride. Der Schwerpunkt in dieser Arbeit lag auf der Synthese von Eisencarbiden/nitriden, aber auch Nickel und Kobalt wurden betrachtet. Durch die Variation der Syntheseparameter konnten verschiedene Eisencarbid/nitrid Nanostrukturen synthetisiert werden. Fe3C-Nanopartikel im Gr{\"o}ßenbereich von d = 5 - 10 nm konnten, durch die Verwendung von Eisenchlorid, hergestellt werden. Die Nanopartikel weisen durch ihre geringe Gr{\"o}ße superparamagnetische Eigenschaften auf und besitzen, im Vergleich zu Eisenoxid Nanopartikeln im gleichen Gr{\"o}ßenbereich, eine h{\"o}here S{\"a}ttigungsmagnetisierung. Diese konnten in fortf{\"u}hrenden Experimenten erfolgreich in ionischen Fl{\"u}ssigkeiten und durch ein Polymer-Coating, im w{\"a}ssrigen Medium, dispergiert werden. Desweiteren wurde durch ein Templatieren mit kolloidalem Silika eine mesopor{\"o}se Fe3C-Nanostruktur hergestellt. Diese konnte erfolgreich in der katalytischen Spaltung von Ammoniak getestet werden. Mit der Verwendung von Eisenacetylacetonat konnten neben Fe3C-Nanopartikeln, nur durch Variation der Reaktionsparameter, auch Fe7C3- und Fe3N-Nanopartikel synthetisiert werden. Speziell f{\"u}r die Fe3C-Nanopartikel konnte die S{\"a}ttigungsmagnetisierung, im Vergleich zu den mit Eisenchlorid synthetisierten Nanopartikeln, nochmals erh{\"o}ht werden. Versuche mit Nickelacetat f{\"u}hrten zu Nickelnitrid (Ni3N) Nanokristallen. Eine zus{\"a}tzliche metallische Nickelphase f{\"u}hrte zu einer Selbstorganisation der Partikel in Scheiben-{\"a}hnliche {\"U}berstrukturen. Mittels Kobaltacetat konnten, in Sph{\"a}ren aggregierte, metallische Kobalt Nanopartikel synthetisiert werden. Kobaltcarbid/nitrid war mit den gegebenen Syntheseparametern nicht zug{\"a}nglich.}, language = {de} } @phdthesis{Schulze2017, author = {Schulze, Nicole}, title = {Neue Templatphasen zur anisotropen Goldnanopartikelherstellung durch den Einsatz strukturbildender Polymere}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409515}, school = {Universit{\"a}t Potsdam}, pages = {VI, 117, xv}, year = {2017}, abstract = {Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung von anisotropen Goldnanopartikeln in einer geeigneten Polyelektrolyt-modifizierten Templatphase. Der Mittelpunkt bildet dabei die Auswahl einer geeigneten Templatphase, zur Synthese von einheitlichen und reproduzierbaren anisotropen Goldnanopartikeln mit den daraus resultierenden besonderen Eigenschaften. Bei der Synthese der anisotropen Goldnanopartikeln lag der Fokus in der Verwendung von Vesikeln als Templatphase, wobei hier der Einfluss unterschiedlicher strukturbildender Polymere (stark alternierende Maleamid-Copolymere PalH, PalPh, PalPhCarb und PalPhBisCarb mit verschiedener Konformation) und Tenside (SDS, AOT - anionische Tenside) bei verschiedenen Synthese- und Abtrennungsbedingungen untersucht werden sollte. Im ersten Teil der Arbeit konnte gezeigt werden, dass PalPhBisCarb bei einem pH-Wert von 9 die Bedingungen eines R{\"o}hrenbildners f{\"u}r eine morphologische Transformation von einer vesikul{\"a}ren Phase in eine r{\"o}hrenf{\"o}rmige Netzwerkstruktur erf{\"u}llt und somit als Templatphase zur formgesteuerten Bildung von Nanopartikeln genutzt werden kann. Im zweiten Teil der Arbeit wurde dargelegt, dass die Templatphase PalPhBisCarb (pH-Wert von 9, Konzentration von 0,01 wt.\%) mit AOT als Tensid und PL90G als Phospholipid (im Verh{\"a}ltnis 1:1) die effektivste Wahl einer Templatphase f{\"u}r die Bildung von anisotropen Strukturen in einem einstufigen Prozess darstellt. Bei einer konstanten Synthesetemperatur von 45 °C wurden die besten Ergebnisse bei einer Goldchloridkonzentration von 2 mM, einem Gold-Templat-Verh{\"a}ltnis von 3:1 und einer Synthesezeit von 30 Minuten erzielt. Ausbeute an anisotropen Strukturen lag bei 52 \% (Anteil an dreieckigen Nanopl{\"a}ttchen von 19 \%). Durch Erh{\"o}hung der Synthesetemperatur konnte die Ausbeute auf 56 \% (29 \%) erh{\"o}ht werden. Im dritten Teil konnte durch zeitabh{\"a}ngige Untersuchungen gezeigt werden, dass bei Vorhandensein von PalPhBisCarb die Bildung der energetisch nicht bevorzugten Pl{\"a}ttchen-Strukturen bei Raumtemperatur initiiert wird und bei 45 °C ein Optimum annimmt. Kintetische Untersuchungen haben gezeigt, dass die Bildung dreieckiger Nanopl{\"a}ttchen bei schrittweiser Zugabe der Goldchlorid-Pr{\"a}kursorl{\"o}sung zur PalPhBisCarb enthaltenden Templatphase durch die Dosierrate der vesikul{\"a}ren Templatphase gesteuert werden kann. In umgekehrter Weise findet bei Zugabe der Templatphase zur Goldchlorid-Pr{\"a}kursorl{\"o}sung bei 45 °C ein {\"a}hnlicher, kinetisch gesteuerter Prozess der Bildung von Nanodreiecken statt mit einer maximalen Ausbeute dreieckigen Nanopl{\"a}ttchen von 29 \%. Im letzten Kapitel erfolgten erste Versuche zur Abtrennung dreieckiger Nanopl{\"a}ttchen von den {\"u}brigen Geometrien der gemischten Nanopartikell{\"o}sung mittels tensidinduzierter Verarmungsf{\"a}llung. Bei Verwendung von AOT mit einer Konzentration von 0,015 M wurde eine Ausbeute an Nanopl{\"a}ttchen von 99 \%, wovon 72 \% dreieckiger Geometrien hatten, erreicht.}, language = {de} } @phdthesis{Bomm2012, author = {Bomm, Jana}, title = {Von Gold Plasmonen und Exzitonen : Synthese, Charakterisierung und Applikationen von Gold Nanopartikeln}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66402}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In dieser Arbeit wurden sph{\"a}rische Gold Nanopartikel (NP) mit einem Durchmesser gr{\"o}ßer ~ 2 nm, Gold Quantenpunkte (QDs) mit einem Durchmesser kleiner ~ 2 nm sowie Gold Nanost{\"a}bchen (NRs) unterschiedlicher L{\"a}nge hergestellt und optisch charakterisiert. Zudem wurden zwei neue Synthesevarianten f{\"u}r die Herstellung thermosensitiver Gold QDs entwickelt werden. Sph{\"a}rische Gold NP zeigen eine Plasmonenbande bei ~ 520 nm, die auf die kollektive Oszillation von Elektronen zur{\"u}ckzuf{\"u}hren ist. Gold NRs weisen aufgrund ihrer anisotropen Form zwei Plasmonenbanden auf, eine transversale Plasmonenbande bei ~ 520 nm und eine longitudinale Plasmonenbande, die vom L{\"a}nge-zu-Durchmesser-Verh{\"a}ltnis der Gold NRs abh{\"a}ngig ist. Gold QDs besitzen keine Plasmonenbande, da ihre Elektronen Quantenbeschr{\"a}nkungen unterliegen. Gold QDs zeigen jedoch aufgrund diskreter Energieniveaus und einer Bandl{\"u}cke Photolumineszenz (PL). Die synthetisierten Gold QDs besitzen eine Breitbandlumineszenz im Bereich von ~ 500-800 nm, wobei die Lumineszenz-eigenschaften (Emissionspeak, Quantenausbeute, Lebenszeiten) stark von den Herstellungs-bedingungen und den Oberfl{\"a}chenliganden abh{\"a}ngen. Die PL in Gold QDs ist ein sehr komplexes Ph{\"a}nomen und r{\"u}hrt vermutlich von Singulett- und Triplett-Zust{\"a}nden her. Gold NRs und Gold QDs konnten in verschiedene Polymere wie bspw. Cellulosetriacetat eingearbeitet werden. Polymernanokomposite mit Gold NRs wurden erstmals unter definierten Bedingungen mechanisch gezogen, um Filme mit optisch anisotropen (richtungsabh{\"a}ngigen) Eigenschaften zu erhalten. Zudem wurde das Temperaturverhalten von Gold NRs und Gold QDs untersucht. Es konnte gezeigt werden, dass eine lokale Variation der Gr{\"o}ße und Form von Gold NRs in Polymernanokompositen durch Temperaturerh{\"o}hung auf 225-250 °C erzielt werden kann. Es zeigte sich, dass die PL der Gold QDs stark temperaturabh{\"a}ngig ist, wodurch die PL QY der Proben beim Abk{\"u}hlen (-7 °C) auf knapp 30 \% verdoppelt und beim Erhitzen auf 70 °C nahezu vollst{\"a}ndig gel{\"o}scht werden konnte. Es konnte demonstriert werden, dass die L{\"a}nge der Alkylkette des Oberfl{\"a}chenliganden einen Einfluss auf die Temperaturstabilit{\"a}t der Gold QDs hat. Zudem wurden verschiedene neuartige und optisch anisotrope Sicherheitslabels mit Gold NRs sowie thermosensitive Sicherheitslabel mit Gold QDs entwickelt. Ebenso scheinen Gold NRs und QDs f{\"u}r die und die Optoelektronik (bspw. Datenspeicherung) und die Medizin (bspw. Krebsdiagnostik bzw. -therapie) von großem Interesse zu sein.}, language = {de} }