@article{NickeldiPrimioMangelsdorfetal.2012, author = {Nickel, Julia C. and di Primio, Rolando and Mangelsdorf, Kai and Stoddart, Daniel and Kallmeyer, Jens}, title = {Characterization of microbial activity in pockmark fields of the SW-Barents Sea}, series = {Marine geology : international journal of marine geology, geochemistry and geophysics}, volume = {332}, journal = {Marine geology : international journal of marine geology, geochemistry and geophysics}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0025-3227}, doi = {10.1016/j.margeo.2012.02.002}, pages = {152 -- 162}, year = {2012}, abstract = {Multibeam bathymetry revealed the occurrence of numerous craterlike depressions, so-called pockmarks, on the sea floor of the Hammerfest Basin and the Loppa High, south-western Barents Sea. To investigate whether these pockmarks are related to ongoing gas seepage, microbial processes associated with methane metabolism were analyzed using geochemical, biogeochemical and microbiological techniques. Gravity cores were collected along transects crossing individual pockmarks, allowing a direct comparison between different locations inside (assumed activity center), on the rim, and outside of a pockmark (reference sites). Concentrations of hydrocarbons in the sediment, particularly methane, were measured as headspace (free) gas, and in the occluded and adsorbed gas fraction. Down to a depth of 2.6 m below sea floor (mbsf) sulfate reduction rates were quantified by radiotracer incubations. Concentrations of dissolved sulfate in the porewater were determined as well. Neither the sulfate profiles nor the gas measurements show any evidence of microbial activity or active fluid venting. Methane concentrations and sulfate reduction rates were extremely low or even below the detection limit. The results show that the observed sediment structures are most likely paleo-pockmarks, their formation probably occurred during the last deglaciation.}, language = {en} }