@phdthesis{Mantiloni2023, author = {Mantiloni, Lorenzo}, title = {Modeling stress and dike pathways in calerdas}, doi = {10.25932/publishup-61262}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612621}, school = {Universit{\"a}t Potsdam}, pages = {xii, 145}, year = {2023}, abstract = {Volcanic hazard assessment relies on physics-based models of hazards, such as lava flows and pyroclastic density currents, whose outcomes are very sensitive to the location where future eruptions will occur. On the contrary, forecast of vent opening locations in volcanic areas typically relies on purely data-driven approaches, where the spatial density of past eruptive vents informs the probability maps of future vent opening. Such techniques may be suboptimal in volcanic systems with missing or scarce data, and where the controls on magma pathways may change over time. An alternative approach was recently proposed, relying on a model of stress-driven pathways of magmatic dikes. In that approach, the crustal stress was optimized so that dike trajectories linked consistently the location of the magma chamber to that of past vents. The retrieved information on the stress state was then used to forecast future dike trajectories. The validation of such an approach requires extensive application to nature. Before doing so, however, several important limitations need to be removed, most importantly the two-dimensional (2D) character of the models and theoretical concepts. In this thesis, I develop methods and tools so that a physics-based strategy of stress inversion and eruptive vent forecast in volcanoes can be applied to three dimensional (3D) problems. In the first part, I test the stress inversion and vent forecast strategy on analog models, still within a 2D framework, but improving on the efficiency of the stress optimization. In the second part, I discuss how to correctly account for gravitational loading/unloading due to complex 3D topography with a Boundary-Element numerical model. Then, I develop a new, simplified but fast model of dike pathways in 3D, designed for running large numbers of simulations at minimal computational cost, and able to backtrack dike trajectories from vents on the surface. Finally, I combine the stress and dike models to simulate dike pathways in synthetic calderas. In the third part, I describe a framework of stress inversion and vent forecast strategy in 3D for calderas. The stress inversion relies on, first, describing the magma storage below a caldera in terms of a probability density function. Next, dike trajectories are backtracked from the known locations of past vents down through the crust, and the optimization algorithm seeks for the stress models which lead trajectories through the regions of highest probability. I apply the new strategy to the synthetic scenarios presented in the second part, and I exploit the results from the stress inversions to produce probability maps of future vent locations for some of those scenarios. In the fourth part, I present the inversion of different deformation source models applied to the ongoing ground deformation observed across the Rhenish Massif in Central Europe. The region includes the Eifel Volcanic Fields in Germany, a potential application case for the vent forecast strategy. The results show how the observed deformation may be due to melt accumulation in sub-horizontal structures in the lower crust or upper mantle. The thesis concludes with a discussion of the stress inversion and vent forecast strategy, its limitations and applicability to real volcanoes. Potential developments of the modeling tools and concepts presented here are also discussed, as well as possible applications to other geophysical problems.}, language = {en} }