@article{LechleitnerBreitenbachChengetal.2017, author = {Lechleitner, Franziska A. and Breitenbach, Sebastian Franz Martin and Cheng, Hai and Plessen, Birgit and Rehfeld, Kira and Goswami, Bedartha and Marwan, Norbert and Eroglu, Deniz and Adkins, Jess F. and Haug, Gerald}, title = {Climatic and in-cave influences on delta O-18 and delta C-13 in a stalagmite from northeastern India through the last deglaciation}, series = {Quaternary research : an interdisciplinary journal}, volume = {88}, journal = {Quaternary research : an interdisciplinary journal}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2017.72}, pages = {458 -- 471}, year = {2017}, abstract = {Northeastern (NE) India experiences extraordinarily pronounced seasonal climate, governed by the Indian summer monsoon (ISM). The vulnerability of this region to floods and droughts calls for detailed and highly resolved paleoclimate reconstructions to assess the recurrence rate and driving factors of ISM changes. We use stable oxygen and carbon isotope ratios (delta O-18 and delta C-13) from stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental conditions in NE India over the last deglaciation (16-6ka). We interpret stalagmite delta O-18 as reflecting ISM strength, whereas delta C-13 appears to be driven by local hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are apparent from the delta O-18 record, similarly to other records from monsoonal Asia. The ISM is weaker during the late glacial (LG) period and the Younger Dryas, and stronger during the BOlling-Allerod and Holocene. Local conditions inferred from the delta C-13 record appear to have changed less substantially over time, possibly related to the masking effect of changing precipitation seasonality. Time series analysis of the delta O-18 record reveals more chaotic conditions during the late glacial and higher predictability during the Holocene, likely related to the strengthening of the seasonal recurrence of the ISM with the onset of the Holocene.}, language = {en} }