@phdthesis{Sauer2013, author = {Sauer, Patrick}, title = {Liberation of low molecular weight organic acids from sedimentary organic matter and their role on microbial activity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68830}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Low molecular weight organic acids (LMWOAs) are important nutrients for microbes. However, most LMWOAs do not exist freely in the environment but are bound to macromolecular organic matter, e.g. kerogen, lignite and coal. During burial and geological maturation of sedimentary macromolecular organic matter biological and abiological processes promote the liberation of LMWOAs into the surrounding sediment. Through this process, microbes in sedimentary subsurface environments are supplied with essential nutrients. To estimate the feedstock potential of buried macromolecular organic matter to many environments it is important to determine the amount of LMWOAs that are bound to such a matrix. However, high-pressure and high temperature are a key feature of deep subsurface environments, and these physical parameters have a profound influence on chemical reaction kinetics. Therefore it is essential for the estimation of the feedstock potential to generate high-pressure and high temperature for the liberation of LMWOAs to recreate true in-situ conditions. This work presents a newly developed, inexpensive incubation system for biological and geological samples. It allows the application of high-pressure and high temperature as well as a subsampling of the liquid phase without loss of pressure, thereby not disturbing the on-going processes. When simulating the liberation of LMWOAs from sedimentary organic matter, the newly developed incubation system produces more realistic results than other extraction systems like Soxhlet. The extraction products remain in the extraction medium throughout the extraction, influencing the chemical conditions of the extraction medium. Sub-bituminous coal samples from New Zealand as well as lignite samples from Germany were extracted at elevated temperature (90˚C) and pressure (5 MPa). The main LMWOAs released from these low rank coals were formate, acetate and oxalate. Extraction efficiency was increased by two to four times for formate, acetate and oxalate in comparison to existing extraction methods without pressurisation and with demineralised water. This shows the importance of pressure for the simulation of true in-situ conditions and suggests that the amount of bioavailable LMWOAs is higher than previously thought. With the increase in carbon capture and storage (CCS) and the enhanced recovery of oil and gas (EOR/EGR), more and more CO2 becomes injected into the underground. However, the effects of elevated concentrations of carbon dioxide on sedimentary organic matter are rarely investigated. As the incuabtion system allows the manipulation of the composition and partial pressure of dissolved gasses, the effect of highly gas-enriched (CO2, CO2/SO2, CO2/NO2; to simulate flue gas conditions) waters on the extraction yield of LMWOAs from macromolecular organic matter was evaluated. For sub-bituminous coal the concentrations of all LMWAOs decreased upon the addition of gas, irrespective of its composition, whereas for lignite formate always and acetate mostly increased, while oxalate decreased. This suggests an positive effect on the nutrient supply for the subsurface microbiota of lignite layers, as formate and acetate are the most common LMWOAs used for microbial metabolism. In terrestrial mud volcanoes (TMVs), sedimentary material is rapidly ascending from great depth to the surface. Therefore LMWOAs that were produced from buried macromolecular organic matter at depth are also brought up to the surface, and fuel heterotrophic microbial ecosystems at the surface. TMVs represent geochemically and microbiologically diverse habitats, which are supplied with organic substrates and electron acceptors from deep-seated hydrocarbon-generating systems and intersected shallow aquifers, respectively. The main electron donor in TMVs in Azerbaijan is sulphate, and microbial sulphate reduction leads to the production of a wide range of reduced sulphur species that are key players in several biological processes. In our study we estimated the effect of LMWOAs on the sulphur metabolising activity of microorganims in TMVs from Azerbaijan. The addition of a mixture of volatile fatty acids containing acetate and other LMWOAs showed significant positive response to the sulphate reduction rate (SRR) of samples of several mud volcanoes. Further investigations on the temperature dependency of the SRR and the characterisation of thermophilic sulphate-reducing bacteria (SRB) showed a connection between the deep hot subsurface and the surface.}, language = {de} } @article{NickeldiPrimioMangelsdorfetal.2012, author = {Nickel, Julia C. and di Primio, Rolando and Mangelsdorf, Kai and Stoddart, Daniel and Kallmeyer, Jens}, title = {Characterization of microbial activity in pockmark fields of the SW-Barents Sea}, series = {Marine geology : international journal of marine geology, geochemistry and geophysics}, volume = {332}, journal = {Marine geology : international journal of marine geology, geochemistry and geophysics}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0025-3227}, doi = {10.1016/j.margeo.2012.02.002}, pages = {152 -- 162}, year = {2012}, abstract = {Multibeam bathymetry revealed the occurrence of numerous craterlike depressions, so-called pockmarks, on the sea floor of the Hammerfest Basin and the Loppa High, south-western Barents Sea. To investigate whether these pockmarks are related to ongoing gas seepage, microbial processes associated with methane metabolism were analyzed using geochemical, biogeochemical and microbiological techniques. Gravity cores were collected along transects crossing individual pockmarks, allowing a direct comparison between different locations inside (assumed activity center), on the rim, and outside of a pockmark (reference sites). Concentrations of hydrocarbons in the sediment, particularly methane, were measured as headspace (free) gas, and in the occluded and adsorbed gas fraction. Down to a depth of 2.6 m below sea floor (mbsf) sulfate reduction rates were quantified by radiotracer incubations. Concentrations of dissolved sulfate in the porewater were determined as well. Neither the sulfate profiles nor the gas measurements show any evidence of microbial activity or active fluid venting. Methane concentrations and sulfate reduction rates were extremely low or even below the detection limit. The results show that the observed sediment structures are most likely paleo-pockmarks, their formation probably occurred during the last deglaciation.}, language = {en} } @article{AdhikariGlombitzaNickeletal.2016, author = {Adhikari, Rishi Ram and Glombitza, Clemens and Nickel, Julia C. and Anderson, Chloe H. and Dunlea, Ann G. and Spivack, Arthur J. and Murray, Richard W. and Kallmeyer, Jens}, title = {Hydrogen Utilization Potential in Subsurface Sediments}, series = {Frontiers in microbiology}, volume = {7}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2016.00008}, pages = {16}, year = {2016}, abstract = {Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones.}, language = {en} } @misc{AdhikariGlombitzaNickeletal.2016, author = {Adhikari, Rishi Ram and Glombitza, Clemens and Nickel, Julia C. and Anderson, Chloe H. and Dunlea, Ann G. and Spivack, Arthur J. and Murray, Richard W. and D'Hondt, Steven and Kallmeyer, Jens}, title = {Hydrogen utilization potential in subsurface sediments}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407678}, pages = {16}, year = {2016}, abstract = {Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones.}, language = {en} }