@article{MengesHoviusAndermannetal.2019, author = {Menges, Johanna and Hovius, Niels and Andermann, Christoff and Dietze, Michael and Swoboda, Charlie and Cook, Kristen L. and Adhikari, Basanta R. and Vieth-Hillebrand, Andrea and Bonnet, Stephane and Reimann, Tony and Koutsodendris, Andreas and Sachse, Dirk}, title = {Late holocene landscape collapse of a trans-himalayan dryland}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL084192}, pages = {13814 -- 13824}, year = {2019}, abstract = {Soil degradation is a severe and growing threat to ecosystem services globally. Soil loss is often nonlinear, involving a rapid deterioration from a stable eco-geomorphic state once a tipping point is reached. Soil loss thresholds have been studied at plot scale, but for landscapes, quantitative constraints on the necessary and sufficient conditions for tipping points are rare. Here, we document a landscape-wide eco-geomorphic tipping point at the edge of the Tibetan Plateau and quantify its drivers and erosional consequences. We show that in the upper Kali Gandaki valley, Nepal, soil formation prevailed under wetter conditions during much of the Holocene. Our data suggest that after a period of human pressure and declining vegetation cover, a 20\% reduction of relative humidity and precipitation below 200 mm/year halted soil formation after 1.6 ka and promoted widespread gullying and rapid soil loss, with irreversible consequences for ecosystem services.}, language = {en} } @article{GarcinDeschampsMenotetal.2018, author = {Garcin, Yannick and Deschamps, Pierre and Menot, Guillemette and de Saulieu, Geoffroy and Schefuss, Enno and Sebag, David and Dupont, Lydie M. and Oslisly, Richard and Brademann, Brian and Mbusnum, Kevin G. and Onana, Jean-Michel and Ako, Andrew A. and Epp, Laura Saskia and Tjallingii, Rik and Strecker, Manfred and Brauer, Achim and Sachse, Dirk}, title = {Early anthropogenic impact on Western Central African rainforests 2,600 y ago}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {13}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1715336115}, pages = {3261 -- 3266}, year = {2018}, abstract = {A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest-savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the "rainforest crisis" to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. delta C-13-inferred vegetation changes confirm a prominent and abrupt appearance of C-4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. delta D values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era.}, language = {en} }