@article{WutzlerHudsonThieken2022, author = {Wutzler, Bianca and Hudson, Paul and Thieken, Annegret}, title = {Adaptation strategies of flood-damaged businesses in Germany}, series = {Frontiers in water}, volume = {4}, journal = {Frontiers in water}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9375}, doi = {10.3389/frwa.2022.932061}, pages = {13}, year = {2022}, abstract = {Flood risk management in Germany follows an integrative approach in which both private households and businesses can make an important contribution to reducing flood damage by implementing property-level adaptation measures. While the flood adaptation behavior of private households has already been widely researched, comparatively less attention has been paid to the adaptation strategies of businesses. However, their ability to cope with flood risk plays an important role in the social and economic development of a flood-prone region. Therefore, using quantitative survey data, this study aims to identify different strategies and adaptation drivers of 557 businesses damaged by a riverine flood in 2013 and 104 businesses damaged by pluvial or flash floods between 2014 and 2017. Our results indicate that a low perceived self-efficacy may be an important factor that can reduce the motivation of businesses to adapt to flood risk. Furthermore, property-owners tended to act more proactively than tenants. In addition, high experience with previous flood events and low perceived response costs could strengthen proactive adaptation behavior. These findings should be considered in business-tailored risk communication.}, language = {en} } @article{SchroeterKreibichVogeletal.2014, author = {Schroeter, Kai and Kreibich, Heidi and Vogel, Kristin and Riggelsen, Carsten and Scherbaum, Frank and Merz, Bruno}, title = {How useful are complex flood damage models?}, series = {Water resources research}, volume = {50}, journal = {Water resources research}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2013WR014396}, pages = {3378 -- 3395}, year = {2014}, abstract = {We investigate the usefulness of complex flood damage models for predicting relative damage to residential buildings in a spatial and temporal transfer context. We apply eight different flood damage models to predict relative building damage for five historic flood events in two different regions of Germany. Model complexity is measured in terms of the number of explanatory variables which varies from 1 variable up to 10 variables which are singled out from 28 candidate variables. Model validation is based on empirical damage data, whereas observation uncertainty is taken into consideration. The comparison of model predictive performance shows that additional explanatory variables besides the water depth improve the predictive capability in a spatial and temporal transfer context, i.e., when the models are transferred to different regions and different flood events. Concerning the trade-off between predictive capability and reliability the model structure seem more important than the number of explanatory variables. Among the models considered, the reliability of Bayesian network-based predictions in space-time transfer is larger than for the remaining models, and the uncertainties associated with damage predictions are reflected more completely.}, language = {en} } @article{SchmidtHesseAttingeretal.2020, author = {Schmidt, Lennart and Hesse, Falk and Attinger, Sabine and Kumar, Rohini}, title = {Challenges in applying machine learning models for hydrological inference}, series = {Water resources research}, volume = {56}, journal = {Water resources research}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2019WR025924}, pages = {10}, year = {2020}, abstract = {Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever-increasing availability of diverse data sets and computational resources as well as advancement in ML algorithms. Despite advances in their predictive accuracy, the usefulness of ML algorithms for inference remains elusive. In this study, we employ two popular ML algorithms, artificial neural networks and random forest, to analyze a large data set of flood events across Germany with the goals to analyze their predictive accuracy and their usability to provide insights to hydrologic system functioning. The results of the ML algorithms are contrasted against a parametric approach based on multiple linear regression. For analysis, we employ a model-agnostic framework named Permuted Feature Importance to derive the influence of models' predictors. This allows us to compare the results of different algorithms for the first time in the context of hydrology. Our main findings are that (1) the ML models achieve higher prediction accuracy than linear regression, (2) the results reflect basic hydrological principles, but (3) further inference is hindered by the heterogeneity of results across algorithms. Thus, we conclude that the problem of equifinality as known from classical hydrological modeling also exists for ML and severely hampers its potential for inference. To account for the observed problems, we propose that when employing ML for inference, this should be made by using multiple algorithms and multiple methods, of which the latter should be embedded in a cross-validation routine.}, language = {en} } @phdthesis{Schlolaut2013, author = {Schlolaut, Gordon}, title = {Varve and event layer chronology of Lake Suigetsu (Japan) back to 40 kyr BP and contribution to the international consensus atmospheric radiocarbon calibration curve}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69096}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The main intention of the PhD project was to create a varve chronology for the Suigetsu Varves 2006' (SG06) composite profile from Lake Suigetsu (Japan) by thin section microscopy. The chronology was not only to provide an age-scale for the various palaeo-environmental proxies analysed within the SG06 project, but also and foremost to contribute, in combination with the SG06 14C chronology, to the international atmospheric radiocarbon calibration curve (IntCal). The SG06 14C data are based on terrestrial leaf fossils and therefore record atmospheric 14C values directly, avoiding the corrections necessary for the reservoir ages of the marine datasets, which are currently used beyond the tree-ring limit in the IntCal09 dataset (Reimer et al., 2009). The SG06 project is a follow up of the SG93 project (Kitagawa \& van der Plicht, 2000), which aimed to produce an atmospheric calibration dataset, too, but suffered from incomplete core recovery and varve count uncertainties. For the SG06 project the complete Lake Suigetsu sediment sequence was recovered continuously, leaving the task to produce an improved varve count. Varve counting was carried out using a dual method approach utilizing thin section microscopy and micro X-Ray Fluorescence (µXRF). The latter was carried out by Dr. Michael Marshall in cooperation with the PhD candidate. The varve count covers 19 m of composite core, which corresponds to the time frame from ≈10 to ≈40 kyr BP. The count result showed that seasonal layers did not form in every year. Hence, the varve counts from either method were incomplete. This rather common problem in varve counting is usually solved by manual varve interpolation. But manual interpolation often suffers from subjectivity. Furthermore, sedimentation rate estimates (which are the basis for interpolation) are generally derived from neighbouring, well varved intervals. This assumes that the sedimentation rates in neighbouring intervals are identical to those in the incompletely varved section, which is not necessarily true. To overcome these problems a novel interpolation method was devised. It is computer based and automated (i.e. avoids subjectivity and ensures reproducibility) and derives the sedimentation rate estimate directly from the incompletely varved interval by statistically analysing distances between successive seasonal layers. Therefore, the interpolation approach is also suitable for sediments which do not contain well varved intervals. Another benefit of the novel method is that it provides objective interpolation error estimates. Interpolation results from the two counting methods were combined and the resulting chronology compared to the 14C chronology from Lake Suigetsu, calibrated with the tree-ring derived section of IntCal09 (which is considered accurate). The varve and 14C chronology showed a high degree of similarity, demonstrating that the novel interpolation method produces reliable results. In order to constrain the uncertainties of the varve chronology, especially the cumulative error estimates, U-Th dated speleothem data were used by linking the low frequency 14C signal of Lake Suigetsu and the speleothems, increasing the accuracy and precision of the Suigetsu calibration dataset. The resulting chronology also represents the age-scale for the various palaeo-environmental proxies analysed in the SG06 project. One proxy analysed within the PhD project was the distribution of event layers, which are often representatives of past floods or earthquakes. A detailed microfacies analysis revealed three different types of event layers, two of which are described here for the first time for the Suigetsu sediment. The types are: matrix supported layers produced as result of subaqueous slope failures, turbidites produced as result of landslides and turbidites produced as result of flood events. The former two are likely to have been triggered by earthquakes. The vast majority of event layers was related to floods (362 out of 369), which allowed the construction of a respective chronology for the last 40 kyr. Flood frequencies were highly variable, reaching their greatest values during the global sea level low-stand of the Glacial, their lowest values during Heinrich Event 1. Typhoons affecting the region represent the most likely control on the flood frequency, especially during the Glacial. However, also local, non-climatic controls are suggested by the data. In summary, the work presented here expands and revises knowledge on the Lake Suigetsu sediment and enabls the construction of a far more precise varve chronology. The 14C calibration dataset is the first such derived from lacustrine sediments to be included into the (next) IntCal dataset. References: Kitagawa \& van der Plicht, 2000, Radiocarbon, Vol 42(3), 370-381 Reimer et al., 2009, Radiocarbon, Vol 51(4), 1111-1150}, language = {en} } @phdthesis{Nied2016, author = {Nied, Manuela}, title = {The role of soil moisture and weather patterns for flood occurrence and characteristics at the river basin scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94612}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 86}, year = {2016}, abstract = {Flood generation at the scale of large river basins is triggered by the interaction of the hydrological pre-conditions and the meteorological event conditions at different spatial and temporal scales. This interaction controls diverse flood generating processes and results in floods varying in magnitude and extent, duration as well as socio-economic consequences. For a process-based understanding of the underlying cause-effect relationships, systematic approaches are required. These approaches have to cover the complete causal flood chain, including the flood triggering meteorological event in combination with the hydrological (pre-)conditions in the catchment, runoff generation, flood routing, possible floodplain inundation and finally flood losses. In this thesis, a comprehensive probabilistic process-based understanding of the causes and effects of floods is advanced. The spatial and temporal dynamics of flood events as well as the geophysical processes involved in the causal flood chain are revealed and the systematic interconnections within the flood chain are deciphered by means of the classification of their associated causes and effects. This is achieved by investigating the role of the hydrological pre-conditions and the meteorological event conditions with respect to flood occurrence, flood processes and flood characteristics as well as their interconnections at the river basin scale. Broadening the knowledge about flood triggers, which up to now has been limited to linking large-scale meteorological conditions to flood occurrence, the influence of large-scale pre-event hydrological conditions on flood initiation is investigated. Using the Elbe River basin as an example, a classification of soil moisture, a key variable of pre-event conditions, is developed and a probabilistic link between patterns of soil moisture and flood occurrence is established. The soil moisture classification is applied to continuously simulated soil moisture data which is generated using the semi-distributed conceptual rainfall-runoff model SWIM. Applying successively a principal component analysis and a cluster analysis, days of similar soil moisture patterns are identified in the period November 1951 to October 2003. The investigation of flood triggers is complemented by including meteorological conditions described by a common weather pattern classification that represents the main modes of atmospheric state variability. The newly developed soil moisture classification thereby provides the basis to study the combined impact of hydrological pre-conditions and large-scale meteorological event conditions on flood occurrence at the river basin scale. A process-based understanding of flood generation and its associated probabilities is attained by classifying observed flood events into process-based flood types such as snowmelt floods or long-rain floods. Subsequently, the flood types are linked to the soil moisture and weather patterns. Further understanding of the processes is gained by modeling of the complete causal flood chain, incorporating a rainfall-runoff model, a 1D/2D hydrodynamic model and a flood loss model. A reshuffling approach based on weather patterns and the month of their occurrence is developed to generate synthetic data fields of meteorological conditions, which drive the model chain, in order to increase the flood sample size. From the large number of simulated flood events, the impact of hydro-meteorological conditions on various flood characteristics is detected through the analysis of conditional cumulative distribution functions and regression trees. The results show the existence of catchment-scale soil moisture patterns, which comprise of large-scale seasonal wetting and drying components as well as of smaller-scale variations related to spatially heterogeneous catchment processes. Soil moisture patterns frequently occurring before the onset of floods are identified. In winter, floods are initiated by catchment-wide high soil moisture, whereas in summer the flood-initiating soil moisture patterns are diverse and the soil moisture conditions are less stable in time. The combined study of both soil moisture and weather patterns shows that the flood favoring hydro-meteorological patterns as well as their interactions vary seasonally. In the analysis period, 18 \% of the weather patterns only result in a flood in the case of preceding soil saturation. The classification of 82 past events into flood types reveals seasonally varying flood processes that can be linked to hydro-meteorological patterns. For instance, the highest flood potential for long-rain floods is associated with a weather pattern that is often detected in the presence of so-called 'Vb' cyclones. Rain-on-snow and snowmelt floods are associated with westerly and north-westerly wind directions. The flood characteristics vary among the flood types and can be reproduced by the applied model chain. In total, 5970 events are simulated. They reproduce the observed event characteristics between September 1957 and August 2002 and provide information on flood losses. A regression tree analysis relates the flood processes of the simulated events to the hydro-meteorological (pre-)event conditions and highlights the fact that flood magnitude is primarily controlled by the meteorological event, whereas flood extent is primarily controlled by the soil moisture conditions. Describing flood occurrence, processes and characteristics as a function of hydro-meteorological patterns, this thesis is part of a paradigm shift towards a process-based understanding of floods. The results highlight that soil moisture patterns as well as weather patterns are not only beneficial to a probabilistic conception of flood initiation but also provide information on the involved flood processes and the resulting flood characteristics.}, language = {en} } @article{MacdonaldMerzGuseetal.2022, author = {Macdonald, Elena and Merz, Bruno and Guse, Bj{\"o}rn and Wietzke, Luzie and Ullrich, Sophie and Kemter, Matthias and Ahrens, Bodo and Vorogushyn, Sergiy}, title = {Event and catchment controls of heavy tail behavior of floods}, series = {Water resources research}, volume = {58}, journal = {Water resources research}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2021WR031260}, pages = {25}, year = {2022}, abstract = {In some catchments, the distribution of annual maximum streamflow shows heavy tail behavior, meaning the occurrence probability of extreme events is higher than if the upper tail decayed exponentially. Neglecting heavy tail behavior can lead to an underestimation of the likelihood of extreme floods and the associated risk. Partly contradictory results regarding the controls of heavy tail behavior exist in the literature and the knowledge is still very dispersed and limited. To better understand the drivers, we analyze the upper tail behavior and its controls for 480 catchments in Germany and Austria over a period of more than 50 years. The catchments span from quickly reacting mountain catchments to large lowland catchments, allowing for general conclusions. We compile a wide range of event and catchment characteristics and investigate their association with an indicator of the tail heaviness of flood distributions, namely the shape parameter of the GEV distribution. Following univariate analyses of these characteristics, along with an evaluation of different aggregations of event characteristics, multiple linear regression models, as well as random forests, are constructed. A novel slope indicator, which represents the relation between the return period of flood peaks and event characteristics, captures the controls of heavy tails best. Variables describing the catchment response are found to dominate the heavy tail behavior, followed by event precipitation, flood seasonality, and catchment size. The pre-event moisture state in a catchment has no relevant impact on the tail heaviness even though it does influence flood magnitudes.}, language = {en} } @inproceedings{LopezTarazonBronstertThiekenetal.2017, author = {L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Bronstert, Axel and Thieken, Annegret and Petrow, Theresia}, title = {International symposium on the effects of global change on floods, fluvial geomorphology and related hazards in mountainous rivers}, series = {Book of Abstracts}, booktitle = {Book of Abstracts}, editor = {L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Bronstert, Axel and Thieken, Annegret and Petrow, Theresia}, organization = {Universit{\"a}t Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396922}, pages = {104}, year = {2017}, abstract = {Both Alpine and Mediterranean areas are considered sensitive to so-called global change, considered as the combination of climate and land use changes. All panels on climate evolution predict future scenarios of increasing frequency and magnitude of floods which are likely to lead to huge geomorphic adjustments of river channels so major metamorphosis of fluvial systems is expected as a result of global change. Such pressures are likely to give rise to major ecological and economic changes and challenges that governments need to address as a matter of priority. Changes in river flow regimes associated with global change are therefore ushering in a new era, where there is a critical need to evaluate hydro-geomorphological hazards from headwaters to lowland areas (flooding can be not just a problem related to being under the water). A key question is how our understanding of these hazards associated with global change can be improved; improvement has to come from integrated research which includes the climatological and physical conditions that could influence the hydrology and sediment generation and hence the conveyance of water and sediments (including the river's capacity, i.e. amount of sediment, and competence, i.e. channel deformation) and the vulnerabilities and economic repercussions of changing hydrological hazards (including the evaluation of the hydro-geomorphological risks too). Within this framework, the purpose of this international symposium is to bring together researchers from several disciplines as hydrology, fluvial geomorphology, hydraulic engineering, environmental science, geography, economy (and any other related discipline) to discuss the effects of global change over the river system in relation with floods. The symposium is organized by means of invited talks given by prominent experts, oral lectures, poster sessions and discussion sessions for each individual topic; it will try to improve our understanding of how rivers are likely to evolve as a result of global change and hence address the associated hazards of that fluvial environmental change concerning flooding. Four main topics are going to be addressed: - Modelling global change (i.e. climate and land-use) at relevant spatial (regional, local) and temporal (from the long-term to the single-event) scales. - Measuring and modelling river floods from the hydrological, sediment transport (both suspended and bedload) and channel morphology points of view at different spatial (from the catchment to the reach) and temporal (from the long-term to the single-event) scales. - Evaluation and assessment of current and future river flooding hazards and risks in a global change perspective. - Catchment management to face river floods in a changing world. We are very pleased to welcome you to Potsdam. We hope you will enjoy your participation at the International Symposium on the Effects of Global Change on Floods, Fluvial Geomorphology and Related Hazards in Mountainous Rivers and have an exciting and profitable experience. Finally, we would like to thank all speakers, participants, supporters, and sponsors for their contributions that for sure will make of this event a very remarkable and fruitful meeting. We acknowledge the valuable support of the European Commission (Marie Curie Intra-European Fellowship, Project ''Floodhazards'', PIEF-GA-2013-622468, Seventh EU Framework Programme) and the Deutschen Forschungsgemeinschaft (Research Training Group "Natural Hazards and Risks in a Changing World" (NatRiskChange; GRK 2043/1) as the symposium would not have been possible without their help. Without your cooperation, this symposium would not be either possible or successful.}, language = {en} } @phdthesis{Laudan2019, author = {Laudan, Jonas}, title = {Changing susceptibility of flood-prone residents in Germany}, doi = {10.25932/publishup-43442}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434421}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2019}, abstract = {Floods are among the most costly natural hazards that affect Europe and Germany, demanding a continuous adaptation of flood risk management. While social and economic development in recent years altered the flood risk patterns mainly with regard to an increase in flood exposure, different flood events are further expected to increase in frequency and severity in certain European regions due to climate change. As a result of recent major flood events in Germany, the German flood risk management shifted to more integrated approaches that include private precaution and preparation to reduce the damage on exposed assets. Yet, detailed insights into the preparedness decisions of flood-prone households remain scarce, especially in connection to mental impacts and individual coping strategies after being affected by different flood types. This thesis aims to gain insights into flash floods as a costly hazard in certain German regions and compares the damage driving factors to the damage driving factors of river floods. Furthermore, psychological impacts as well as the effects on coping and mitigation behaviour of flood-affected households are assessed. In this context, psychological models such as the Protection Motivation Theory (PMT) and methods such as regressions and Bayesian statistics are used to evaluate influencing factors on the mental coping after an event and to identify psychological variables that are connected to intended private flood mitigation. The database consists of surveys that were conducted among affected households after major river floods in 2013 and flash floods in 2016. The main conclusions that can be drawn from this thesis reveal that the damage patterns and damage driving factors of strong flash floods differ significantly from those of river floods due to a rapid flow origination process, higher flow velocities and flow forces. However, the effects on mental coping of people that have been affected by flood events appear to be weakly influenced by different flood types, but yet show a coherence to the event severity, where often thinking of the respective event is pronounced and also connected to a higher mitigation motivation. The mental coping and preparation after floods is further influenced by a good information provision and a social environment, which encourages a positive attitude towards private mitigation. As an overall recommendation, approaches for an integrated flood risk management in Germany should be followed that also take flash floods into account and consider psychological characteristics of affected households to support and promote private flood mitigation. Targeted information campaigns that concern coping options and discuss current flood risks are important to better prepare for future flood hazards in Germany.}, language = {en} } @article{DoThiChinhBubeckNguyenVietDungetal.2016, author = {Do Thi Chinh, and Bubeck, Philip and Nguyen Viet Dung, and Kreibich, Heidi}, title = {The 2011 flood event in the Mekong Delta: preparedness, response, damage and recovery of private households and small businesses}, series = {Disasters : the journal of disaster studies, policy and management}, volume = {40}, journal = {Disasters : the journal of disaster studies, policy and management}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0361-3666}, doi = {10.1111/disa.12171}, pages = {753 -- 778}, year = {2016}, abstract = {Floods frequently cause substantial economic and human losses, particularly in developing countries. For the development of sound flood risk management schemes that reduce flood consequences, detailed insights into the different components of the flood risk management cycle, such as preparedness, response, flood impact analyses and recovery, are needed. However, such detailed insights are often lacking: commonly, only (aggregated) data on direct flood damage are available. Other damage categories such as losses owing to the disruption of production processes are usually not considered, resulting in incomplete risk assessments and possibly inappropriate recommendations for risk management. In this paper, data from 858 face-to-face interviews among flood-prone households and small businesses in Can Tho city in the Vietnamese Mekong Delta are presented to gain better insights into the damage caused by the 2011 flood event and its management by households and businesses.}, language = {en} } @article{BubeckBotzenLaudanetal.2018, author = {Bubeck, Philip and Botzen, W. J. Wouter and Laudan, Jonas and Aerts, Jeroen C. J. H. and Thieken, Annegret}, title = {Insights into flood-coping appraisals of protection motivation theory}, series = {Risk analysis}, volume = {38}, journal = {Risk analysis}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0272-4332}, doi = {10.1111/risa.12938}, pages = {1239 -- 1257}, year = {2018}, abstract = {Protection motivation theory (PMT) has become a popular theory to explain the risk-reducing behavior of residents against natural hazards. PMT captures the two main cognitive processes that individuals undergo when faced with a threat, namely, threat appraisal and coping appraisal. The latter describes the evaluation of possible response measures that may reduce or avert the perceived threat. Although the coping appraisal component of PMT was found to be a better predictor of protective intentions and behavior, little is known about the factors that influence individuals' coping appraisals of natural hazards. More insight into flood-coping appraisals of PMT, therefore, are needed to better understand the decision-making process of individuals and to develop effective risk communication strategies. This study presents the results of two surveys among more than 1,600 flood-prone households in Germany and France. Five hypotheses were tested using multivariate statistics regarding factors related to flood-coping appraisals, which were derived from the PMT framework, related literature, and the literature on social vulnerability. We found that socioeconomic characteristics alone are not sufficient to explain flood-coping appraisals. Particularly, observational learning from the social environment, such as friends and neighbors, is positively related to flood-coping appraisals. This suggests that social norms and networks play an important role in flood-preparedness decisions. Providing risk and coping information can also have a positive effect. Given the strong positive influence of the social environment on flood-coping appraisals, future research should investigate how risk communication can be enhanced by making use of the observed social norms and network effects.}, language = {en} }