@article{StedingKempkaKuehn2021, author = {Steding, Svenja and Kempka, Thomas and K{\"u}hn, Michael}, title = {How insoluble inclusions and intersecting layers affect the leaching process within potash seams}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199314}, pages = {21}, year = {2021}, abstract = {Potash seams are a valuable resource containing several economically interesting, but also highly soluble minerals. In the presence of water, uncontrolled leaching can occur, endangering subsurface mining operations. In the present study, the influence of insoluble inclusions and intersecting layers on leaching zone evolution was examined by means of a reactive transport model. For that purpose, a scenario analysis was carried out, considering different rock distributions within a carnallite-bearing potash seam. The results show that reaction-dominated systems are not affected by heterogeneities at all, whereas transport-dominated systems exhibit a faster advance in homogeneous rock compositions. In return, the ratio of permeated rock in vertical direction is higher in heterogeneous systems. Literature data indicate that most natural potash systems are transport-dominated. Accordingly, insoluble inclusions and intersecting layers can usually be seen as beneficial with regard to reducing hazard potential as long as the mechanical stability of leaching zones is maintained. Thereby, the distribution of insoluble areas is of minor impact unless an inclined, intersecting layer occurs that accelerates leaching zone growth in one direction. Moreover, it is found that the saturation dependency of dissolution rates increases the growth rate in the long term, and therefore must be considered in risk assessments.}, language = {en} } @article{RohrmannStreckerBookhagenetal.2014, author = {Rohrmann, Alexander and Strecker, Manfred and Bookhagen, Bodo and Mulch, Andreas and Sachse, Dirk and Pingel, Heiko and Alonso, Ricardo N. and Schildgen, Taylor F. and Montero, Carolina}, title = {Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes}, series = {Earth \& planetary science letters}, volume = {407}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2014.09.021}, pages = {187 -- 195}, year = {2014}, language = {en} } @article{KaiserCacaceScheckWenderothetal.2011, author = {Kaiser, Bjoern Onno and Cacace, Mauro and Scheck-Wenderoth, Magdalena and Lewerenz, Bjoern}, title = {Characterization of main heat transport processes in the Northeast German Basin constraints from 3-D numerical models}, series = {Geochemistry, geophysics, geosystems}, volume = {12}, journal = {Geochemistry, geophysics, geosystems}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2011GC003535}, pages = {17}, year = {2011}, abstract = {To investigate and quantify main physical heat driving processes affecting the present-day subsurface thermal field, we study a complex geological setting, the Northeast German Basin (NEGB). The internal geological structure of the NEGB is characterized by the presence of a relatively thick layer of Permian Zechstein salt (up to 5000 m), which forms many salt diapirs and pillows locally reaching nearly the surface. By means of three-dimensional numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity related effects. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces as driven by topographic gradients and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt playing a prominent role. In contrast, buoyancy forces triggered by temperature-dependent fluid density variations are demonstrated to affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers.}, language = {en} }