@article{WangFosterYanetal.2019, author = {Wang, Xiaoxi and Foster, William J. and Yan, J. and Li, A. and Mutti, Maria}, title = {Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction}, series = {Global and planetary change}, volume = {180}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2019.05.005}, pages = {1 -- 15}, year = {2019}, abstract = {Following the Middle Permian (Capitanian) mass extinction there was a global 'reef eclipse', and this event had an important role in the Paleozoic-Mesozoic transition of reef ecosystems. Furthermore, the recovery pattern of reef ecosystems in the Wuchiapingian of South China, before the radiation of Changhsingian reefs, is poorly understood. Here, we present a detailed sedimentological account of the Tieqiao section, South China, which records the only known Wuchiapingian reef setting from South China. Six reef growing phases were identified within six transgressive-regressive cycles. The cycles represent changes of deposition in a shallow basin to a subtidal outer platform setting, and the reefal build-ups are recorded in the shallowest part of the cycles above wave base in the euphotic zone. Our results show that the initial reef recovery started from the shallowing up part of the 1st cycle, within the Clarkina leveni conodont zone, which is two conodont zones earlier than previously recognized. In addition, even though metazoans, such as sponges, do become important in the development of the reef bodies, they are not a major component until later in the Wuchiapingian in the 5th and 6th transgressive-regressive cycles. This suggests a delayed recovery of metazoan reef ecosystems following the Middle Permian extinction. Furthermore, even though sponges do become abundant within the reefs, it is the presence and growth of the encrusters Archaeolithoporella and Tubiphytes and abundance of microbial micrites that play an important role in stabilizing the reef structures that form topographic highs.}, language = {en} } @phdthesis{Wang2020, author = {Wang, Xia}, title = {Reef ecosystem recovery following the Middle Permian (Capitanian) mass extinction}, doi = {10.25932/publishup-48750}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487502}, school = {Universit{\"a}t Potsdam}, pages = {XI, 144}, year = {2020}, abstract = {To find out the future of nowadays reef ecosystem turnover under the environmental stresses such as global warming and ocean acidification, analogue studies from the geologic past are needed. As a critical time of reef ecosystem innovation, the Permian-Triassic transition witnessed the most severe demise of Phanerozoic reef builders, and the establishment of modern style symbiotic relationships within the reef-building organisms. Being the initial stage of this transition, the Middle Permian (Capitanian) mass extinction coursed a reef eclipse in the early Late Permian, which lead to a gap of understanding in the post-extinction Wuchiapingian reef ecosystem, shortly before the radiation of Changhsingian reefs. Here, this thesis presents detailed biostratigraphic, sedimentological, and palaeoecological studies of the Wuchiapingian reef recovery following the Middle Permian (Capitanian) mass extinction, on the only recorded Wuchiapingian reef setting, outcropping in South China at the Tieqiao section. Conodont biostratigraphic zonations were revised from the Early Permian Artinskian to the Late Permian Wuchiapingian in the Tieqiao section. Twenty main and seven subordinate conodont zones are determined at Tieqiao section including two conodont zone below and above the Tieqiao reef complex. The age of Tieqiao reef was constrained as early to middle Wuchiapingian. After constraining the reef age, detailed two-dimensional outcrop mapping combined with lithofacies study were carried out on the Wuchiapingian Tieqiao Section to investigate the reef growth pattern stratigraphically as well as the lateral changes of reef geometry on the outcrop scale. Semi-quantitative studies of the reef-building organisms were used to find out their evolution pattern within the reef recovery. Six reef growth cycles were determined within six transgressive-regressive cycles in the Tieqiao section. The reefs developed within the upper part of each regressive phase and were dominated by different biotas. The timing of initial reef recovery after the Middle Permian (Capitanian) mass extinction was updated to the Clarkina leveni conodont zone, which is earlier than previous understanding. Metazoans such as sponges were not the major components of the Wuchiapingian reefs until the 5th and 6th cycles. So, the recovery of metazoan reef ecosystem after the Middle Permian (Capitanian) mass extinction was obviously delayed. In addition, although the importance of metazoan reef builders such as sponges did increase following the recovery process, encrusting organisms such as Archaeolithoporella and Tubiphytes, combined with microbial carbonate precipitation, still played significant roles to the reef building process and reef recovery after the mass extinction. Based on the results from outcrop mapping and sedimentological studies, quantitative composition analysis of the Tieqiao reef complex were applied on selected thin sections to further investigate the functioning of reef building components and the reef evolution after the Middle Permian (Capitanian) mass extinction. Data sets of skeletal grains and whole rock components were analyzed. The results show eleven biocommunity clusters/eight rock composition clusters dominated by different skeletal grains/rock components. Sponges, Archaeolithoporella and Tubiphytes were the most ecologically important components within the Wuchiapingian Tieqiao reef, while the clotted micrites and syndepositional cements are the additional important rock components for reef cores. The sponges were important within the whole reef recovery. Tubiphytes were broadly distributed in different environments and played a key-role in the initial reef communities. Archaeolithoporella concentrated in the shallower part of reef cycles (i.e., the upper part of reef core) and was functionally significant for the enlargement of reef volume. In general, the reef recovery after the Middle Permian (Capitanian) mass extinction has some similarities with the reef recovery following the end-Permian mass extinction. It shows a delayed recovery of metazoan reefs and a stepwise recovery pattern that was controlled by both ecological and environmental factors. The importance of encrusting organisms and microbial carbonates are also similar to most of the other post-extinction reef ecosystems. These findings can be instructive to extend our understanding of the reef ecosystem evolution under environmental perturbation or stresses.}, language = {en} } @phdthesis{Schintgen2016, author = {Schintgen, Tom Vincent}, title = {The geothermal potential of Luxembourg}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87110}, school = {Universit{\"a}t Potsdam}, pages = {XXII, 313}, year = {2016}, abstract = {The aim of this work is the evaluation of the geothermal potential of Luxembourg. The approach consists in a joint interpretation of different types of information necessary for a first rather qualitative assessment of deep geothermal reservoirs in Luxembourg and the adjoining regions in the surrounding countries of Belgium, France and Germany. For the identification of geothermal reservoirs by exploration, geological, thermal, hydrogeological and structural data are necessary. Until recently, however, reliable information about the thermal field and the regional geology, and thus about potential geothermal reservoirs, was lacking. Before a proper evaluation of the geothermal potential can be performed, a comprehensive survey of the geology and an assessment of the thermal field are required. As a first step, the geology and basin structure of the Mesozoic Trier-Luxembourg Basin (TLB) is reviewed and updated using recently published information on the geology and structures as well as borehole data available in Luxembourg and the adjoining regions. A Bouguer map is used to get insight in the depth, morphology and structures in the Variscan basement buried beneath the Trier-Luxembourg Basin. The geological section of the old Cessange borehole is reinterpreted and provides, in combination with the available borehole data, consistent information for the production of isopach maps. The latter visualize the synsedimentary evolution of the Trier-Luxembourg Basin. Complementary, basin-wide cross sections illustrate the evolution and structure of the Trier-Luxembourg Basin. The knowledge gained does not support the old concept of the Weilerbach Mulde. The basin-wide cross sections, as well as the structural and sedimentological observations in the Trier-Luxembourg Basin suggest that the latter probably formed above a zone of weakness related to a buried Rotliegend graben. The inferred graben structure designated by SE-Luxembourg Graben (SELG) is located in direct southwestern continuation of the Wittlicher Rotliegend-Senke. The lack of deep boreholes and subsurface temperature prognosis at depth is circumnavigated by using thermal modelling for inferring the geothermal resource at depth. For this approach, profound structural, geological and petrophysical input data are required. Conceptual geological cross sections encompassing the entire crust are constructed and further simplified and extended to lithospheric scale for their utilization as thermal models. The 2-D steady state and conductive models are parameterized by means of measured petrophysical properties including thermal conductivity, radiogenic heat production and density. A surface heat flow of 75 ∓ 7 (2δ) mW m-2 for verification of the thermal models could be determined in the area. The models are further constrained by the geophysically-estimated depth of the lithosphere-asthenosphere boundary (LAB) defined by the 1300 °C isotherm. A LAB depth of 100 km, as seismically derived for the Ardennes, provides the best fit with the measured surface heat flow. The resulting mantle heat flow amounts to ∼40 mW m-2. Modelled temperatures are in the range of 120-125 °C at 5 km depth and of 600-650 °C at the crust/mantle discontinuity (Moho). Possible thermal consequences of the 10-20 Ma old Eifel plume, which apparently caused upwelling of the asthenospheric mantle to 50-60 km depth, were modelled in a steady-state thermal scenario resulting in a surface heat flow of at least 91 mW m-2 (for the plume top at 60 km) in the Eifel region. Available surface heat-flow values are significantly lower (65-80 mW m-2) and indicate that the plume-related heating has not yet entirely reached the surface. Once conceptual geological models are established and the thermal regime is assessed, the geothermal potential of Luxembourg and the surrounding areas is evaluated by additional consideration of the hydrogeology, the stress field and tectonically active regions. On the one hand, low-enthalpy hydrothermal reservoirs in Mesozoic reservoirs in the Trier-Luxembourg Embayment (TLE) are considered. On the other hand, petrothermal reservoirs in the Lower Devonian basement of the Ardennes and Eifel regions are considered for exploitation by Enhanced/Engineered Geothermal Systems (EGS). Among the Mesozoic aquifers, the Buntsandstein aquifer characterized by temperatures of up to 50 °C is a suitable hydrothermal reservoir that may be exploited by means of heat pumps or provide direct heat for various applications. The most promising area is the zone of the SE-Luxembourg Graben. The aquifer is warmest underneath the upper Alzette River valley and the limestone plateau in Lorraine, where the Buntsandstein aquifer lies below a thick Mesozoic cover. At the base of an inferred Rotliegend graben in the same area, temperatures of up to 75 °C are expected. However, geological and hydraulic conditions are uncertain. In the Lower Devonian basement, thick sandstone-/quartzite-rich formations with temperatures >90 °C are expected at depths >3.5 km and likely offer the possibility of direct heat use. The setting of the S{\"u}deifel (South Eifel) region, including the M{\"u}llerthal region near Echternach, as a tectonically active zone may offer the possibility of deep hydrothermal reservoirs in the fractured Lower Devonian basement. Based on the recent findings about the structure of the Trier-Luxembourg Basin, the new concept presents the M{\"u}llerthal-S{\"u}deifel Depression (MSD) as a Cenozoic structure that remains tectonically active and subsiding, and therefore is relevant for geothermal exploration. Beyond direct use of geothermal heat, the expected modest temperatures at 5 km depth (about 120 °C) and increased permeability by EGS in the quartzite-rich Lochkovian could prospectively enable combined geothermal heat production and power generation in Luxembourg and the western realm of the Eifel region.}, language = {en} } @article{FosterLehrmannYuetal.2019, author = {Foster, William J. and Lehrmann, Daniel J. and Yu, Meiyi and Martindale, Rowan C.}, title = {Facies selectivity of benthic invertebrates in a Permian/Triassic boundary microbialite succession: Implications for the "microbialite refuge" hypothesis}, series = {Geobiology}, volume = {17}, journal = {Geobiology}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1472-4677}, doi = {10.1111/gbi.12343}, pages = {523 -- 535}, year = {2019}, abstract = {Thrombolite and stromatolite habitats are becoming increasingly recognized as important refuges for invertebrates during Phanerozoic Oceanic Anoxic Events (OAEs); it is posited that oxygenic photosynthesis by cyanobacteria in these microbialites provided a refuge from anoxic conditions (i.e., the "microbialite refuge" hypothesis). Here, we test this hypothesis by investigating the distribution of ~34, 500 benthic invertebrate fossils found in ~100 samples from a microbialite succession that developed following the latest Permian mass extinction event on the Great Bank of Guizhou (South China), representing microbial (stromatolites and thrombolites) and non-microbial facies. The stromatolites were the least taxonomically diverse facies, and the thrombolites also recorded significantly lower diversities when compared to the non-microbial facies. Based on the distribution and ornamentation of the bioclasts within the thrombolites and stromatolites, the bioclasts are inferred to have been transported and concentrated in the non-microbial fabrics, that is, cavities around the microbial framework. Therefore, many of the identified metazoans from the post-extinction microbialites are not observed to have been living within a microbial mat. Furthermore, the lifestyle of many of the taxa identified from the microbialites was not suited for, or even amenable to, life within a benthic microbial mat. The high diversity of oxygen-dependent metazoans in the non-microbial facies on the Great Bank of Guizhou, and inferences from geochemical records, suggests that the microbialites and benthic communities developed in oxygenated environments, which disproves that the microbes were the source of the oxygenation. Instead, we posit that microbialite successions represent a taphonomic window for exceptional preservation of the biota, similar to a Konzentrat-Lagerstatte, which has allowed for diverse fossil assemblages to be preserved during intervals of poor preservation.}, language = {en} }