@article{WetzelKempkaKuehn2020, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Hydraulic and mechanical impacts of pore space alterations within a sandstone quantified by a flow velocity-dependent precipitation approach}, series = {Materials}, volume = {13}, journal = {Materials}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13143100}, pages = {20}, year = {2020}, abstract = {Geochemical processes change the microstructure of rocks and thereby affect their physical behaviour at the macro scale. A micro-computer tomography (micro-CT) scan of a typical reservoir sandstone is used to numerically examine the impact of three spatial alteration patterns on pore morphology, permeability and elastic moduli by correlating precipitation with the local flow velocity magnitude. The results demonstrate that the location of mineral growth strongly affects the permeability decrease with variations by up to four orders in magnitude. Precipitation in regions of high flow velocities is characterised by a predominant clogging of pore throats and a drastic permeability reduction, which can be roughly described by the power law relation with an exponent of 20. A continuous alteration of the pore structure by uniform mineral growth reduces the permeability comparable to the power law with an exponent of four or the Kozeny-Carman relation. Preferential precipitation in regions of low flow velocities predominantly affects smaller throats and pores with a minor impact on the flow regime, where the permeability decrease is considerably below that calculated by the power law with an exponent of two. Despite their complete distinctive impact on hydraulics, the spatial precipitation patterns only slightly affect the increase in elastic rock properties with differences by up to 6.3\% between the investigated scenarios. Hence, an adequate characterisation of the spatial precipitation pattern is crucial to quantify changes in hydraulic rock properties, whereas the present study shows that its impact on elastic rock parameters is limited. The calculated relations between porosity and permeability, as well as elastic moduli can be applied for upscaling micro-scale findings to reservoir-scale models to improve their predictive capabilities, what is of paramount importance for a sustainable utilisation of the geological subsurface.}, language = {en} } @article{WangWangWangetal.2016, author = {Wang, Hao and Wang, Xue-jiang and Wang, Wei-shi and Yan, Xiang-bo and Xia, Peng and Chen, Jie and Zhao, Jian-fu}, title = {Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil}, series = {Journal of chemical technology \& biotechnology}, volume = {91}, journal = {Journal of chemical technology \& biotechnology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0268-2575}, doi = {10.1002/jctb.4931}, pages = {3045 -- 3052}, year = {2016}, abstract = {BACKROUND: Few studies have been carried out to connect nutrients recovery from wastewater and heavy metals immobilization in contaminated soil. To achieve the goal, ammonia nitrogen (AN) and phosphorus (P) were recovered from rare-earth wastewater by using the formation of struvite, which was used as the amendment with plant ash for copper, lead and chromium immobilization. RESULTS: AN removal efficiency and residual P reached 95.32 +/- 0.73\% and 6.14 +/- 1.72mgL(-1) under optimal conditions: pH= 9.0, n(Mg): n(N): n(P)= 1.2: 1: 1.1, which were obtained using response surface methodology (RSM). The minimum available concentrations of Cu, Pb and Cr (CPC) separately reduced to 320.82 mg kg(-1), 190.77 mg kg(-1) and 121.46 mg kg(-1) with increasing immobilization time at the mass ratio of phosphate precipitate (PP)/plant ash (PA) of 1: 3. Humic acid (HA) and fulvic acid (FA) were beneficial to immobilize Cu, both of which showed no effect or even a negative effect on Pb and Cr immobilization.}, language = {en} } @article{VossBookhagenSachseetal.2020, author = {Voss, Katalyn A. and Bookhagen, Bodo and Sachse, Dirk and Chadwick, Oliver A.}, title = {Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal}, series = {Journal of hydrology}, volume = {586}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.124802}, pages = {17}, year = {2020}, abstract = {The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater.}, language = {en} } @article{RohrmannStreckerBookhagenetal.2014, author = {Rohrmann, Alexander and Strecker, Manfred and Bookhagen, Bodo and Mulch, Andreas and Sachse, Dirk and Pingel, Heiko and Alonso, Ricardo N. and Schildgen, Taylor F. and Montero, Carolina}, title = {Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes}, series = {Earth \& planetary science letters}, volume = {407}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2014.09.021}, pages = {187 -- 195}, year = {2014}, language = {en} } @article{RegmiBookhagen2022, author = {Regmi, Shakil and Bookhagen, Bodo}, title = {The spatial pattern of extreme precipitation from 40 years of gauge data in the central Himalaya}, series = {Weather and climate extremes}, volume = {37}, journal = {Weather and climate extremes}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-0947}, doi = {10.1016/j.wace.2022.100470}, pages = {14}, year = {2022}, abstract = {The topography of the Himalaya exerts a substantial control on the spatial distribution of monsoonal rainfall, which is a vital water source for the regional economy and population. But the occurrence of short-lived and high-intensity precipitation results in socio-economic losses. This study relies on 40 years of daily data from 204 ground stations in Nepal to derive extreme precipitation thresholds, amounts, and days at the 95th percentile. We additionally determine the precipitation magnitude-frequency relation. We observe that extreme precipitation amounts follow an almost uniform band parallel to topographic contour lines in the southern Himalaya mountains in central and eastern Nepal but not in western Nepal. The relationship of extreme precipitation indices with topographic relief shows that extreme precipitation thresholds decrease with increasing elevation, but extreme precipitation days increase in higher elevation areas. Furthermore, stations above 1 km elevation exhibit a power-law relation in the rainfall magnitude-frequency framework. Stations at higher elevations generally have lower values of power-law exponents than low elevation areas. This suggests a fundamentally different behaviour of the rainfall distribution and an increased occurrence of extreme rainfall storms in the high elevation areas of Nepal.}, language = {en} } @phdthesis{Murawski2017, author = {Murawski, Aline}, title = {Trends in precipitation over Germany and the Rhine basin related to changes in weather patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412725}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2017}, abstract = {Niederschlag als eine der wichtigsten meteorologischen Gr{\"o}ßen f{\"u}r Landwirtschaft, Wasserversorgung und menschliches Wohlbefinden hat schon immer erh{\"o}hte Aufmerksamkeit erfahren. Niederschlagsmangel kann verheerende Auswirkungen haben, wie z.B. Missernten und Wasserknappheit. {\"U}berm{\"a}ßige Niederschl{\"a}ge andererseits bergen jedoch ebenfalls Gefahren in Form von Hochwasser oder Sturzfluten und wiederum Missernten. Daher wurde viel Arbeit in die Detektion von Niederschlags{\"a}nderungen und deren zugrundeliegende Prozesse gesteckt. Insbesondere angesichts von Klimawandel und unter Ber{\"u}cksichtigung des Zusammenhangs zwischen Temperatur und atmosph{\"a}rischer Wasserhaltekapazit{\"a}t, ist großer Bedarf an Forschung zum Verst{\"a}ndnis der Auswirkungen von Klimawandel auf Niederschlags{\"a}nderungen gegeben. Die vorliegende Arbeit hat das Ziel, vergangene Ver{\"a}nderungen in Niederschlag und anderen meteorologischen Variablen zu verstehen. F{\"u}r verschiedene Zeitr{\"a}ume wurden Tendenzen gefunden und mit entsprechenden Ver{\"a}nderungen in der großskaligen atmosph{\"a}rischen Zirkulation in Zusammenhang gebracht. Die Ergebnisse dieser Arbeit k{\"o}nnen als Grundlage f{\"u}r die Attributierung von Hochwasserver{\"a}nderungen zu Klimawandel genutzt werden. Die Annahmen f{\"u}r die Maßstabsverkleinerung („Downscaling") der Daten von großskaligen Zirkulationsmodellen auf die lokale Skala wurden hier getestet und verifziert. In einem ersten Schritt wurden Niederschlagsver{\"a}nderungen in Deutschland analysiert. Dabei lag der Fokus nicht nur auf Niederschlagssummen, sondern auch auf Eigenschaften der statistischen Verteilung, {\"U}bergangswahrscheinlichkeiten als Maß f{\"u}r Trocken- und Niederschlagsperioden und Extremniederschlagsereignissen. Den r{\"a}umlichen Fokus auf das Rheineinzugsgebiet, das gr{\"o}ßte Flusseinzugsgebiet Deutschlands und einer der Hauptwasserwege Europas, verlagernd, wurden nachgewiesene Ver{\"a}nderungen in Niederschlag und anderen meteorologischen Gr{\"o}ßen in Bezug zu einer „optimierten" Wetterlagenklassifikation analysiert. Die Wetterlagenklassifikation wurde unter der Maßgabe entwickelt, die Varianz des lokalen Klimas bestm{\"o}glich zu erkl{\"a}ren. Die letzte hier behandelte Frage dreht sich darum, ob die beobachteten Ver{\"a}nderungen im lokalen Klima eher H{\"a}ufigkeits{\"a}nderungen der Wetterlagen zuzuordnen sind oder einer Ver{\"a}nderung der Wetterlagen selbst. Eine gebr{\"a}uchliche Annahme f{\"u}r einen Downscaling-Ansatz mit Hilfe von Wetterlagen und einem stochastischen Wettergenerator ist, dass Klimawandel sich allein durch eine Ver{\"a}nderung der H{\"a}ufigkeit von Wetterlagen ausdr{\"u}ckt, die Eigenschaften der Wetterlagen dabei jedoch konstant bleiben. Diese Annahme wurde {\"u}berpr{\"u}ft und die F{\"a}higkeit der neuesten Generation von Zirkulationsmodellen, diese Wetterlagen zu reproduzieren, getestet. Niederschlagsver{\"a}nderungen in Deutschland im Zeitraum 1951-2006 lassen sich zusammenfassen als negativ im Sommer und positiv in allen anderen Jahreszeiten. Verschiedene Niederschlagscharakteristika best{\"a}tigen die Tendenz in den Niederschlagssummen: w{\"a}hrend mittlere und extreme Niederschlagstageswerte im Winter zugenommen haben, sind auch zusammenh{\"a}ngende Niederschlagsperioden l{\"a}nger geworden (ausgedr{\"u}ckt als eine gestiegene Wahrscheinlichkeit f{\"u}r einen Tag mit Niederschlag gefolgt von einem weiteren nassen Tag). Im Sommer wurde das Gegenteil beobachtet: gesunkene Niederschlagssummen, untermauert von verringerten Mittel- und Extremwerten und l{\"a}ngeren Trockenperioden. Abseits dieser allgemeinen Zusammenfassung f{\"u}r das gesamte Gebiet Deutschlands, ist die r{\"a}umliche Verteilung von Niederschlagsver{\"a}nderungen deutlich heterogener. Vermehrter Niederschlag im Winter wurde haupts{\"a}chlich im Nordwesten und S{\"u}dosten Deutschlands beobachtet, w{\"a}hrend im Fr{\"u}hling die st{\"a}rksten Ver{\"a}nderungen im Westen und im Herbst im S{\"u}den aufgetreten sind. Das saisonale Bild wiederum l{\"o}st sich f{\"u}r die zugeh{\"o}rigen Monate auf, z.B. setzt sich der Anstieg im Herbstniederschlag aus deutlich vermehrtem Niederschlag im S{\"u}dwesten im Oktober und im S{\"u}dosten im November zusammen. Diese Ergebnisse betonen die starken r{\"a}umlichen Zusammenh{\"a}nge der Niederschlags{\"a}nderungen. Der n{\"a}chste Schritt hinsichtlich einer Zuordnung von Niederschlagsver{\"a}nderungen zu {\"A}nderungen in großskaligen Zirkulationsmustern, war die Ableitung einer Wetterlagenklassifikation, die die betrachteten lokalen Klimavariablen hinreichend stratifizieren kann. Fokussierend auf Temperatur, Globalstrahlung und Luftfeuchte zus{\"a}tzlich zu Niederschlag, wurde eine Klassifikation basierend auf Luftdruck, Temperatur und spezifischer Luftfeuchtigkeit als am besten geeignet erachtet, die Varianz der lokalen Variablen zu erkl{\"a}ren. Eine vergleichsweise hohe Anzahl von 40 Wetterlagen wurde ausgew{\"a}hlt, die es erlaubt, typische Druckmuster durch die zus{\"a}tzlich verwendete Temperaturinformation einzelnen Jahreszeiten zuzuordnen. W{\"a}hrend die F{\"a}higkeit, Varianz im Niederschlag zu erkl{\"a}ren, relativ gering ist, ist diese deutlich besser f{\"u}r Globalstrahlung und nat{\"u}rlich Temperatur. Die meisten der aktuellen Zirkulationsmodelle des CMIP5-Ensembles sind in der Lage, die Wetterlagen hinsichtlich H{\"a}ufigkeit, Saisonalit{\"a}t und Persistenz hinreichend gut zu reproduzieren. Schließlich wurden dieWetterlagen bez{\"u}glich Ver{\"a}nderungen in ihrer H{\"a}ufigkeit, Saisonalit{\"a}t und Persistenz, sowie der Wetterlagen-spezifischen Niederschl{\"a}ge und Temperatur, untersucht. Um Unsicherheiten durch die Wahl eines bestimmten Analysezeitraums auszuschließen, wurden alle m{\"o}glichen Zeitr{\"a}ume mit mindestens 31 Jahren im Zeitraum 1901-2010 untersucht. Dadurch konnte die Annahme eines konstanten Zusammenhangs zwischen Wetterlagen und lokalem Wetter gr{\"u}ndlich {\"u}berpr{\"u}ft werden. Es wurde herausgefunden, dass diese Annahme nur zum Teil haltbar ist. W{\"a}hrend Ver{\"a}nderungen in der Temperatur haupts{\"a}chlich auf Ver{\"a}nderungen in der Wetterlagenh{\"a}ufigkeit zur{\"u}ckzuf{\"u}hren sind, wurde f{\"u}r Niederschlag ein erheblicher Teil von Ver{\"a}nderungen innerhalb einzelner Wetterlagen gefunden. Das Ausmaß und sogar das Vorzeichen der Ver{\"a}nderungen h{\"a}ngt hochgradig vom untersuchten Zeitraum ab. Die H{\"a}ufigkeit einiger Wetterlagen steht in direkter Beziehung zur langfristigen Variabilit{\"a}t großskaliger Zirkulationsmuster. Niederschlagsver{\"a}nderungen variieren nicht nur r{\"a}umlich, sondern auch zeitlich - Aussagen {\"u}ber Tendenzen sind nur in Bezug zum jeweils untersuchten Zeitraum g{\"u}ltig. W{\"a}hrend ein Teil der Ver{\"a}nderungen auf {\"A}nderungen der großskaligen Zirkulation zur{\"u}ckzuf{\"u}hren ist, gibt es auch deutliche Ver{\"a}nderungen innerhalb einzelner Wetterlagen. Die Ergebnisse betonen die Notwendigkeit f{\"u}r einen sorgf{\"a}ltigen Nachweis von Ver{\"a}nderungen m{\"o}glichst verschiedene Zeitr{\"a}ume zu untersuchen und mahnen zur Vorsicht bei der Anwendung von Downscaling-Ans{\"a}tzen mit Hilfe von Wetterlagen, da diese die Auswirkungen von Klimaver{\"a}nderungen durch das Vernachl{\"a}ssigen von Wetterlagen-internen Ver{\"a}nderungen falsch einsch{\"a}tzen k{\"o}nnten.}, language = {en} } @article{HierroBurgosFonsecaRamezaniZiaranietal.2019, author = {Hierro, Rodrigo and Burgos Fonseca, Y. and Ramezani Ziarani, Maryam and Llamedo, P. and Schmidt, Torsten and de la Torre, Alejandro and Alexander, P.}, title = {On the behavior of rainfall maxima at the eastern Andes}, series = {Atmospheric Research}, volume = {234}, journal = {Atmospheric Research}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0169-8095}, doi = {10.1016/j.atmosres.2019.104792}, year = {2019}, abstract = {In this study, we detect high percentile rainfall events in the eastern central Andes, based on Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25 × 0.25°, a temporal resolution of 3 h, and for the duration from 2001 to 2018. We identify three areas with high mean accumulated rainfall and analyze their atmospheric behaviour and rainfall characteristics with specific focus on extreme events. Extreme events are defined by events above the 95th percentile of their daily mean accumulated rainfall. Austral summer (DJF) is the period of the year presenting the most frequent extreme events over these three regions. Daily statistics show that the spatial maxima, as well as their associated extreme events, are produced during the night. For the considered period, ERA-Interim reanalysis data, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) with 0.75° x0.75° spatial and 6-hourly temporal resolutions, were used for the analysis of the meso- and synoptic-scale atmospheric patterns. Night- and day-time differences indicate a nocturnal overload of northerly and northeasterly low-level humidity flows arriving from tropical South America. Under these conditions, cooling descending air from the mountains may find unstable air at the surface, giving place to the development of strong local convection. Another possible mechanism is presented here: a forced ascent of the low-level flow due to the mountains, disrupting the atmospheric stratification and generating vertical displacement of air trajectories. A Principal Component Analysis (PCA) in T-mode is applied to day- and night-time data during the maximum and extreme events. The results show strong correlation areas over each subregion under study during night-time, whereas during day-time no defined patterns are found. This confirms the observed nocturnal behavior of rainfall within these three hotspots.}, language = {en} } @misc{HargisGotschPoradaetal.2019, author = {Hargis, Hailey and Gotsch, Sybil G. and Porada, Philipp and Moore, Georgianne W. and Ferguson, Briana and Van Stan, John T.}, title = {Arboreal epiphytes in the soil-atmosphere interface}, series = {Geosciences}, volume = {9}, journal = {Geosciences}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, doi = {10.3390/geosciences9080342}, pages = {17}, year = {2019}, abstract = {Arboreal epiphytes (plants residing in forest canopies) are present across all major climate zones and play important roles in forest biogeochemistry. The substantial water storage capacity per unit area of the epiphyte "bucket" is a key attribute underlying their capability to influence forest hydrological processes and their related mass and energy flows. It is commonly assumed that the epiphyte bucket remains saturated, or near-saturated, most of the time; thus, epiphytes (particularly vascular epiphytes) can store little precipitation, limiting their impact on the forest canopy water budget. We present evidence that contradicts this common assumption from (i) an examination of past research; (ii) new datasets on vascular epiphyte and epi-soil water relations at a tropical montane cloud forest (Monteverde, Costa Rica); and (iii) a global evaluation of non-vascular epiphyte saturation state using a process-based vegetation model, LiBry. All analyses found that the external and internal water storage capacity of epiphyte communities is highly dynamic and frequently available to intercept precipitation. Globally, non-vascular epiphytes spend <20\% of their time near saturation and regionally, including the humid tropics, model results found that non-vascular epiphytes spend similar to 1/3 of their time in the dry state (0-10\% of water storage capacity). Even data from Costa Rican cloud forest sites found the epiphyte community was saturated only 1/3 of the time and that internal leaf water storage was temporally dynamic enough to aid in precipitation interception. Analysis of the epi-soils associated with epiphytes further revealed the extent to which the epiphyte bucket emptied-as even the canopy soils were often <50\% saturated (29-53\% of all days observed). Results clearly show that the epiphyte bucket is more dynamic than currently assumed, meriting further research on epiphyte roles in precipitation interception, redistribution to the surface and chemical composition of "net" precipitation waters reaching the surface.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {5}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-24-2235-2020}, pages = {2235 -- 2251}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {951}, issn = {1866-8372}, doi = {10.25932/publishup-47100}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471006}, pages = {19}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} }