@article{RuszkiewiczdeMacedoMirandaVizueteetal.2018, author = {Ruszkiewicz, Joanna A. and de Macedo, Gabriel Teixeira and Miranda-Vizuete, Antonio and Teixeira da Rocha, Joao B. and Bowman, Aaron B. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael}, title = {The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {68}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2018.08.007}, pages = {189 -- 202}, year = {2018}, abstract = {Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans.}, language = {en} } @article{LohrenBornhorstFitkauetal.2016, author = {Lohren, Hanna and Bornhorst, Julia and Fitkau, Romy and Pohl, Gabriele and Galla, Hans-Joachim and Schwerdtle, Tanja}, title = {Effects on and transfer across the blood-brain barrier in vitro-Comparison of organic and inorganic mercury species}, series = {BMC pharmacology \& toxicology}, volume = {17}, journal = {BMC pharmacology \& toxicology}, publisher = {BioMed Central}, address = {London}, issn = {2050-6511}, doi = {10.1186/s40360-016-0106-5}, pages = {422 -- 433}, year = {2016}, abstract = {Background: Transport of methylmercury (MeHg) across the blood-brain barrier towards the brain side is well discussed in literature, while ethylmercury (EtHg) and inorganic mercury are not adequately characterized regarding their entry into the brain. Studies investigating a possible efflux out of the brain are not described to our knowledge. Methods: This study compares, for the first time, effects of organic methylmercury chloride (MeHgCl), EtHg-containing thiomersal and inorganic Hg chloride (HgCl2) on as well as their transfer across a primary porcine in vitro model of the blood-brain barrier. Results: With respect to the barrier integrity, the barrier model exhibited a much higher sensitivity towards HgCl2 following basolateral incubation (brain-facing side) as compared to apical application (blood-facing side). These HgCl2 induced effects on the barrier integrity after brain side incubation are comparable to that of the organic species, although MeHgCl and thiomersal exerted much higher cytotoxic effects in the barrier building cells. Hg transfer rates following exposure to organic species in both directions argue for diffusion as transfer mechanism. Inorganic Hg application surprisingly resulted in a Hg transfer out of the brain-facing compartment. Conclusions: In case of MeHgCl and thiomersal incubation, mercury crossed the barrier in both directions, with a slight accumulation in the basolateral, brain-facing compartment, after simultaneous incubation in both compartments. For HgCl2, our data provide first evidence that the blood-brain barrier transfers mercury out of the brain.}, language = {en} } @article{LohrenBlagojevicFitkauetal.2015, author = {Lohren, Hanna and Blagojevic, Lara and Fitkau, Romy and Ebert, Franziska and Schildknecht, Stefan and Leist, Marcel and Schwerdtle, Tanja}, title = {Toxicity of organic and inorganic mercury species in human neurons and human astrocytes}, series = {Journal of trace elements in medicine and biology}, volume = {32}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {Jena}, issn = {0946-672X}, doi = {10.1016/j.jtemb.2015.06.008}, pages = {200 -- 208}, year = {2015}, abstract = {Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.}, language = {en} }