@article{ZhongWangAdelsbergeretal.2011, author = {Zhong, Qi and Wang, Weinan and Adelsberger, Joseph and Golosova, Anastasia and Koumba, Achille M. Bivigou and Laschewsky, Andr{\´e} and Funari, Sergio S. and Perlich, Jan and Roth, Stephan V. and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Collapse transition in thin films of poly(methoxydiethylenglycol acrylate)}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2384-1}, pages = {569 -- 581}, year = {2011}, abstract = {The thermal behavior of poly(methoxydiethylenglycol acrylate) (PMDEGA) is studied in thin hydrogel films on solid supports and is compared with the behavior in aqueous solution. The PMDEGA hydrogel film thickness is varied from 2 to 422 nm. Initially, these films are homogenous, as measured with optical microscopy, atomic force microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering (GISAXS). However, they tend to de-wet when stored under ambient conditions. Along the surface normal, no long-ranged correlations between substrate and film surface are detected with GISAXS, due to the high mobility of the polymer at room temperature. The swelling of the hydrogel films as a function of the water vapor pressure and the temperature are probed for saturated water vapor pressures between 2,380 and 3,170 Pa. While the swelling capability is found to increase with water vapor pressure, swelling in dependence on the temperature revealed a collapse phase transition of a lower critical solution temperature type. The transition temperature decreases from 40.6 A degrees C to 36.6 A degrees C with increasing film thickness, but is independent of the thickness for very thin films below a thickness of 40 nm. The observed transition temperature range compares well with the cloud points observed in dilute (0.1 wt.\%) and semi-dilute (5 wt.\%) solution which decrease from 45 A degrees C to 39 A degrees C with increasing concentration.}, language = {en} } @article{KyriakosAravopoulouAugsbachetal.2014, author = {Kyriakos, Konstantinos and Aravopoulou, Dionysia and Augsbach, Lukas and Sapper, Josef and Ottinger, Sarah and Psylla, Christina and Rafat, Ali Aghebat and Benitez-Montoya, Carlos Adrian and Miasnikova, Anna and Di, Zhenyu and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Kyritsis, Apostolos and Papadakis, Christine M.}, title = {Novel thermoresponsive block copolymers having different architectures-structural, rheological, thermal, and dielectric investigations}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {292}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-014-3282-0}, pages = {1757 -- 1774}, year = {2014}, abstract = {Thermoresponsive block copolymers comprising long, hydrophilic, nonionic poly(methoxy diethylene glycol acrylate) (PMDEGA) blocks and short hydrophobic polystyrene (PS) blocks are investigated in aqueous solution. Various architectures, namely diblock, triblock, and starblock copolymers are studied as well as a PMDEGA homopolymer as reference, over a wide concentration range. For specific characterization methods, polymers were labeled, either by partial deuteration (for neutron scattering studies) or by fluorophores. Using fluorescence correlation spectroscopy, critical micellization concentrations are identified and the hydrodynamic radii of the micelles, r (h) (mic) , are determined. Using dynamic light scattering, the behavior of r (h) (mic) in dependence on temperature and the cloud points are measured. Small-angle neutron scattering enabled the detailed structural investigation of the micelles and their aggregates below and above the cloud point. Viscosity measurements are carried out to determine the activation energies in dependence on the molecular architecture. Differential scanning calorimetry at high polymer concentration reveals the glass transition of the polymers, the fraction of uncrystallized water and effects of the phase transition at the cloud point. Dielectric relaxation spectroscopy shows that the polarization changes reversibly at the cloud point, which reflects the formation of large aggregates upon heating through the cloud point and their redissolution upon cooling.}, language = {en} } @article{BogomolovaSeckerKoetzetal.2017, author = {Bogomolova, Anna and Secker, Christian and Koetz, Joachim and Schlaad, Helmut}, title = {Thermo-induced multistep assembly of double-hydrophilic block copolypeptoids in water}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {295}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-017-4044-6}, pages = {1305 -- 1312}, year = {2017}, abstract = {The aqueous solution behavior of thermoresponsive-hydrophilic block copolypeptoids, i.e., poly(N-(n-propyl)glycine) (x) -block-poly(N-methylglycine) (y) (x = 70; y = 23, 42, 76), in the temperature range of 20-45 A degrees C is studied. Turbidimetric analyses of the 0.1 wt\% aqueous solutions reveal two cloud points at T (cp)similar to 30 and 45 A degrees C and a clearing point in between at T (cl)similar to 42 A degrees C. Temperature-dependent dynamic light scattering (DLS) suggest that right above the first collapse temperature, single polymer molecules assemble into large structures which upon further heating, i.e., at the clearing point temperature, disassemble into micelle-like structures. Upon further heating, the aggregates start to grow again in size, as recognized by the second cloud point, through a crystallization process.}, language = {en} } @article{AdelsbergerBivigouKoumbaMiasnikovaetal.2015, author = {Adelsberger, Joseph and Bivigou Koumba, Achille Mayelle and Miasnikova, Anna and Busch, Peter and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution-a SANS study of the temperature-induced switching behavior}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {293}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-015-3535-6}, pages = {1515 -- 1523}, year = {2015}, abstract = {A concentrated solution of a symmetric triblock copolymer with a thermoresponsive poly(methoxy diethylene glycol acrylate) (PMDEGA) middle block and short hydrophobic, fully deuterated polystyrene end blocks is investigated in D2O where it undergoes a lower critical solution temperature-type phase transition at ca. 36 A degrees C. Small-angle neutron scattering (SANS) in a wide temperature range (15-50 A degrees C) is used to characterize the size and inner structure of the micelles as well as the correlation between the micelles and the formation of aggregates by the micelles above the cloud point (CP). A model featuring spherical core-shell micelles, which are correlated by a hard-sphere potential or a sticky hard-sphere potential together with a Guinier form factor describing aggregates formed by the micelles above the CP, fits the SANS curves well in the entire temperature range. The thickness of the thermoresponsive micellar PMDEGA shell as well as the hard-sphere radius increase slightly already below the cloud point. Whereas the thickness of the thermoresponsive micellar shell hardly shrinks when heating through the CP and up to 50 A degrees C, the hard-sphere radius decreases within 3.5 K at the CP. The volume fraction decreases already significantly below the CP, which may be at the origin of the previously observed gel-sol transition far below the CP (Miasnikova et al., Langmuir 28: 4479-4490, 2012). Above the CP, small, and at higher temperatures, large aggregates are formed by the micelles.}, language = {en} }