@article{ClubbBookhagenRheinwalt2019, author = {Clubb, Fiona J. and Bookhagen, Bodo and Rheinwalt, Aljoscha}, title = {Clustering river profiles to classify geomorphic domains}, series = {Journal of geophysical research : Earth surface}, volume = {124}, journal = {Journal of geophysical research : Earth surface}, number = {6}, publisher = {American Geophysical Union}, address = {Hoboken}, issn = {2169-9003}, doi = {10.1029/2019JF005025}, pages = {1417 -- 1439}, year = {2019}, abstract = {The structure and organization of river networks has been used for decades to investigate the influence of climate and tectonics on landscapes. The majority of these studies either analyze rivers in profile view by extracting channel steepness or calculate planform metrics such as drainage density. However, these techniques rely on the assumption of homogeneity: that intrinsic and external factors are spatially or temporally invariant over the measured profile. This assumption is violated for the majority of Earth's landscapes, where variations in uplift rate, rock strength, climate, and geomorphic process are almost ubiquitous. We propose a method for classifying river profiles to identify landscape regions with similar characteristics by adapting hierarchical clustering algorithms developed for time series data. We first test our clustering on two landscape evolution scenarios and find that we can successfully cluster regions with different erodibility and detect the transient response to sudden base level fall. We then test our method in two real landscapes: first in Bitterroot National Forest, Idaho, where we demonstrate that our method can detect transient incision waves and the topographic signature of fluvial and debris flow process regimes; and second, on Santa Cruz Island, California, where our technique identifies spatial patterns in lithology not detectable through normalized channel steepness analysis. By calculating channel steepness separately for each cluster, our method allows the extraction of more reliable steepness metrics than if calculated for the landscape as a whole. These examples demonstrate the method's ability to disentangle fluvial morphology in complex lithological and tectonic settings.}, language = {en} } @article{CescaSenDahm2014, author = {Cesca, Simone and Sen, Ali Tolga and Dahm, Torsten}, title = {Seismicity monitoring by cluster analysis of moment tensors}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt492}, pages = {1813 -- 1826}, year = {2014}, abstract = {We suggest a new clustering approach to classify focal mechanisms from large moment tensor catalogues, with the purpose of automatically identify families of earthquakes with similar source geometry, recognize the orientation of most active faults, and detect temporal variations of the rupture processes. The approach differs in comparison to waveform similarity methods since clusters are detected even if they occur in large spatial distances. This approach is particularly helpful to analyse large moment tensor catalogues, as in microseismicity applications, where a manual analysis and classification is not feasible. A flexible algorithm is here proposed: it can handle different metrics, norms, and focal mechanism representations. In particular, the method can handle full moment tensor or constrained source model catalogues, for which different metrics are suggested. The method can account for variable uncertainties of different moment tensor components. We verify the method with synthetic catalogues. An application to real data from mining induced seismicity illustrates possible applications of the method and demonstrate the cluster detection and event classification performance with different moment tensor catalogues. Results proof that main earthquake source types occur on spatially separated faults, and that temporal changes in the number and characterization of focal mechanism clusters are detected. We suggest that moment tensor clustering can help assessing time dependent hazard in mines.}, language = {en} }