@article{WeithoffNeumannSeiferthetal.2019, author = {Weithoff, Guntram and Neumann, Catherin and Seiferth, Jacqueline and Weisse, Thomas}, title = {Living on the edge: reproduction, dispersal potential, maternal effects and local adaptation in aquatic, extremophilic invertebrates}, series = {Aquatic sciences : research across boundaries}, volume = {81}, journal = {Aquatic sciences : research across boundaries}, number = {3}, publisher = {Springer}, address = {Basel}, issn = {1015-1621}, doi = {10.1007/s00027-019-0638-z}, pages = {9}, year = {2019}, abstract = {Isolated extreme habitats are ideally suited to investigate pivotal ecological processes such as niche use, local adaptation and dispersal. Extremophilic animals living in isolated habitats face the problem that dispersal is limited through the absence of suitable dispersal corridors, which in turn facilitates local adaptation. We used five rotifer isolates from extremely acidic mining lakes with a pH of below 3 as model organisms to test whether these isolates are acidotolerant or acidophilic, whether they survive and reproduce at their niche edges (here pH 2 and circum-neutral pH) and whether local adaptation has evolved. To evaluate potential dispersal limitation, we tested whether animals and their parthenogenetic eggs survive and remain reproductive or viable at unfavourable pH-conditions. All five isolates were acidophilic with a pH-optimum in the range of 4-6, which is well above the pH (< 3) of their lakes of origin. At unfavourable high pH, in four out of the five isolates parthenogenetic females produced a high number of non-viable eggs. Females and eggs produced at favourable pH (4) remained vital at an otherwise unfavourable pH of 7, indicating that for dispersal no acidic dispersal corridors are necessary. Common garden experiments revealed no clear evidence for local adaptation in any of the five isolates. Despite their acidophilic nature, all five isolates can potentially disperse via circum-neutral water bodies as long as their residence time is short, suggesting a broader dispersal niche than their realized niche. Local adaptation might have been hampered by the low population sizes of the rotifers in their isolated habitat and the short time span the mining lakes have existed.}, language = {en} }