@article{VogeliNajmanvanderBeeketal.2017, author = {Vogeli, Natalie and Najman, Yani and van der Beek, Peter and Huyghe, Pascale and Wynn, Peter M. and Govin, Gwladys and van der Veen, Iris and Sachse, Dirk}, title = {Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution}, series = {Earth \& planetary science letters}, volume = {471}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.04.037}, pages = {1 -- 9}, year = {2017}, abstract = {The Himalaya has a major influence on global and regional climate, in particular on the Asian monsoon system. The foreland basin of the Himalaya contains a record of tectonics and paleoclimate since the Miocene. Previous work on the evolution of vegetation and climate has focused on the central and western Himalaya, where a shift from C3 to C4 vegetation has been observed at similar to 7 Ma and linked to increased seasonality, but the climatic evolution of the eastern part of the orogen is less well understood. In order to track vegetation as a marker of monsoon intensity and seasonality, we analyzed delta C-13 and 8180 values of soil carbonate and associated delta C-13 values of bulk organic carbon from previously dated sedimentary sections exposing the syn-orogenic detrital Dharamsala and Siwalik Groups in the west, and, for the first time, the Siwalik Group in the east of the Himalayan foreland basin. Sedimentary records span from 20 to 1 Myr in the west (Joginder Nagar, Jawalamukhi, and Haripur Kolar sections) and from 13 to 1 Myr in the east (Kameng section), respectively. The presence of soil carbonate in the west and its absence in the east is a first indication of long-term lateral climatic variation, as soil carbonate requires seasonally arid conditions to develop. delta C-13 values in soil carbonate show a shift from around -10 parts per thousand to -2 parts per thousand at similar to 7 Ma in the west, which is confirmed by delta C-13 analyses on bulk organic carbon that show a shift from around -23 parts per thousand to -19 parts per thousand at the same time. Such a shift in isotopic values is likely to be associated with a change from C3 to C4 vegetation. In contrast, delta C-13 values of bulk organic carbon remain at 23 parts per thousand o in the east. Thus, our data show that the current east -west variation in climate was established at similar to 7 Ma. We propose that the regional change towards a more seasonal climate in the west is linked to a decrease of the influence of the Westerlies, delivering less winter precipitation to the western Himalaya, while the east remained annually humid due to its proximity to the monsoonal moisture source. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{StuebnerGrujicDunkletal.2017, author = {St{\"u}bner, Konstanze and Grujic, Djordje and Dunkl, Istvan and Thiede, Rasmus Christoph and Eugster, Patricia}, title = {Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya}, series = {Earth \& planetary science letters}, volume = {481}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.10.036}, pages = {273 -- 283}, year = {2017}, abstract = {The Himalayan thrust belt comprises three in-sequence foreland-propagating orogen-scale faults, the Main Central thrust, the Main Boundary thrust, and the Main Frontal thrust. Recently, the Munsiari-Ramgarh-Shumar thrust system has been recognized as an additional, potentially orogen-scale shear zone in the proximal footwall of the Main Central thrust. The timing of the Munsiari, Ramgarh, and Shumar thrusts and their role in Himalayan tectonics are disputed. We present 31 new zircon (U-Th)/He ages from a profile across the central Himachal Himalaya in the Beas River area. Within a ∼40 km wide belt northeast of the Kullu-Larji-Rampur window, ages ranging from to constrain a distinct episode of rapid Pliocene to Present exhumation; north and south of this belt, zircon (U-Th)/He ages are older ( to ). We attribute the Pliocene rapid exhumation episode to basal accretion to the Himalayan thrust belt and duplex formation in the Lesser Himalayan sequence including initiation of the Munsiari thrust. Pecube thermokinematic modelling suggests exhumation rates of ∼2-3 mm/yr from 4-7 to 0 Ma above the duplex contrasting with lower (<0.3 mm/yr) middle-late Miocene exhumation rates. The Munsiari thrust terminates laterally in central Himachal Pradesh. In the NW Indian Himalaya, the Main Central thrust zone comprises the sheared basal sections of the Greater Himalayan sequence and the mylonitic 'Bajaura nappe' of Lesser Himalayan affinity. We correlate the Bajaura unit with the Ramgarh thrust sheet in Nepal based on similar lithologies and the middle Miocene age of deformation. The Munsiari thrust in the central Himachal Himalaya is several Myr younger than deformation in the Bajaura and Ramgarh thrust sheets. Our results illustrate the complex and segmented nature of the Munsiari-Ramgarh-Shumar thrust system.}, language = {en} }