@article{WitzelStrehmelBaldermannetal.2017, author = {Witzel, Katja and Strehmel, Nadine and Baldermann, Susanne and Neugart, Susanne and Becker, Yvonne and Becker, Matthias and Berger, Beatrice and Scheel, Dierk and Grosch, Rita and Schreiner, Monika and Ruppel, Silke}, title = {Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656(T)}, series = {Plant and soil}, volume = {419}, journal = {Plant and soil}, publisher = {Springer}, address = {Dordrecht}, issn = {0032-079X}, doi = {10.1007/s11104-017-3371-1}, pages = {557 -- 573}, year = {2017}, abstract = {Plant growth-promoting bacteria (PGPB) affect host physiological processes in various ways. This study aims at elucidating the dependence of bacterial-induced growth promotion on the plant genotype and characterizing plant metabolic adaptations to PGPB. Eighteen Arabidopsis thaliana accessions were inoculated with the PGPB strain Kosakonia radicincitans DSM 16656(T). Colonisation pattern was assessed by enhanced green fluorescent protein (eGFP)-tagged K. radicincitans in three A. thaliana accessions differing in their growth response. Metabolic impact of bacterial colonisation was determined for the best responding accession by profiling distinct classes of plant secondary metabolites and root exudates. Inoculation of 18 A. thaliana accessions resulted in a wide range of growth responses, from repression to enhancement. Testing the bacterial colonisation of three accessions did not reveal a differential pattern. Profiling of plant secondary metabolites showed a differential accumulation of glucosinolates, phenylpropanoids and carotenoids in roots. Analysis of root exudates demonstrated that primary and secondary metabolites were predominantly differentially depleted by bacterial inoculation. The plant genotype controls the bacterial growth promoting traits. Levels of lutein and beta-carotene were elevated in inoculated roots. Supplementing a bacterial suspension with beta-carotene increased bacterial growth, while this was not the case when lutein was applied, indicating that beta-carotene could be a positive regulator of plant growth promotion.}, language = {en} } @article{ThirumalaikumarDevkarMehterovetal.2017, author = {Thirumalaikumar, Venkatesh P. and Devkar, Vikas and Mehterov, Nikolay and Ali, Shawkat and Ozgur, Rengin and Turkan, Ismail and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato}, series = {Plant Biotechnology Journal}, volume = {16}, journal = {Plant Biotechnology Journal}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1467-7644}, doi = {10.1111/pbi.12776}, pages = {354 -- 366}, year = {2017}, abstract = {Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.}, language = {en} } @article{ShahnejatBushehriAlluMehterovetal.2017, author = {Shahnejat-Bushehri, Sara and Allu, Annapurna Devi and Mehterov, Nikolay and Thirumalaikumar, Venkatesh P. and Alseekh, Saleh and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00214}, pages = {13}, year = {2017}, abstract = {The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.}, language = {en} } @article{EbrahimianMotlaghRiboneThirumalaikumaretal.2017, author = {Ebrahimian-Motlagh, Saghar and Ribone, Pamela A. and Thirumalaikumar, Venkatesh P. and Allu, Annapurna Devi and Chan, Raquel L. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription Factor AtHB13}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.02118}, pages = {12}, year = {2017}, abstract = {Low water availability is the major environmental factor limiting growth and productivity of plants and crops and is therefore considered of high importance for agriculture affected by climate change. Identifying regulatory components controlling the response and tolerance to drought stress is thus of major importance. The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) from Arabidopsis thaliana extends leaf longevity under non-stress growth conditions, lowers cellular hydrogen peroxide (H2O2) level, and enhances tolerance against heat stress and salinity. Here, we additionally find that JUB1 strongly increases tolerance to drought stress in Arabidopsis when expressed from both, a constitutive (CaMV 35S) and an abiotic stress-induced (RD29A) promoter. Employing a yeast one-hybrid screen we identified HD-Zip class I TF AtHB13 as an upstream regulator of JUB1. AtHB13 has previously been reported to act as a positive regulator of drought tolerance. AtHB13 and JUB1 thereby establish a joint drought stress control module.}, language = {en} } @article{CzarnockaVanDerKelenWillemsetal.2017, author = {Czarnocka, Weronika and Van Der Kelen, Katrien and Willems, Patrick and Szechynska-Hebda, Magdalena and Shahnejat-Bushehri, Sara and Balazadeh, Salma and Rusaczonek, Anna and M{\"u}ller-R{\"o}ber, Bernd and Van Breusegem, Frank and Karpinski, Stanislaw}, title = {The dual role of LESION SIMULATING DISEASE 1 as a condition-dependent scaffold protein and transcription regulator}, series = {Plant, cell \& environment : cell physiology, whole-plant physiology, community physiology}, volume = {40}, journal = {Plant, cell \& environment : cell physiology, whole-plant physiology, community physiology}, publisher = {Wiley}, address = {Hoboken}, issn = {0140-7791}, doi = {10.1111/pce.12994}, pages = {2644 -- 2662}, year = {2017}, abstract = {Since its discovery over two decades ago as an important cell death regulator in Arabidopsis thaliana, the role of LESION SIMULATING DISEASE 1 (LSD1) has been studied intensively within both biotic and abiotic stress responses as well as with respect to plant fitness regulation. However, its molecular mode of action remains enigmatic. Here, we demonstrate that nucleo-cytoplasmic LSD1 interacts with a broad range of other proteins that are engaged in various molecular pathways such as ubiquitination, methylation, cell cycle control, gametogenesis, embryo development and cell wall formation. The interaction of LSD1 with these partners is dependent on redox status, as oxidative stress significantly changes the quantity and types of LSD1-formed complexes. Furthermore, we show that LSD1 regulates the number and size of leaf mesophyll cells and affects plant vegetative growth. Importantly, we also reveal that in addition to its function as a scaffold protein, LSD1 acts as a transcriptional regulator. Taken together, our results demonstrate that LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator.}, language = {en} }