@article{WolffGastEversetal.2021, author = {Wolff, Martin and Gast, Klaus and Evers, Andreas and Kurz, Michael and Pfeiffer-Marek, Stefania and Sch{\"u}ler, Anja and Seckler, Robert and Thalhammer, Anja}, title = {A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom11091305}, pages = {20}, year = {2021}, abstract = {Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix-helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers.}, language = {en} } @article{VillatoroLealZuehlkeRiebeetal.2020, author = {Villatoro Leal, Jos{\´e} Andr{\´e}s and Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and Weber, Marcus and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Sub-ambient pressure IR-MALDI ion mobility spectrometer for the determination of low and high field mobilities}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, number = {22}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-020-02735-0}, pages = {5247 -- 5260}, year = {2020}, abstract = {A new ion mobility (IM) spectrometer, enabling mobility measurements in the pressure range between 5 and 500 mbar and in the reduced field strength range E/N of 5-90 Td, was developed and characterized. Reduced mobility (K-0) values were studied under low E/N (constant value) as well as high E/N (deviation from low field K-0) for a series of molecular ions in nitrogen. Infrared matrix-assisted laser desorption ionization (IR-MALDI) was used in two configurations: a source working at atmospheric pressure (AP) and, for the first time, an IR-MALDI source working with a liquid (aqueous) matrix at sub-ambient/reduced pressure (RP). The influence of RP on IR-MALDI was examined and new insights into the dispersion process were gained. This enabled the optimization of the IM spectrometer for best analytical performance. While ion desolvation is less efficient at RP, the transport of ions is more efficient, leading to intensity enhancement and an increased number of oligomer ions. When deciding between AP and RP IR-MALDI, a trade-off between intensity and resolving power has to be considered. Here, the low field mobility of peptide ions was first measured and compared with reference values from ESI-IM spectrometry (at AP) as well as collision cross sections obtained from molecular dynamics simulations. The second application was the determination of the reduced mobility of various substituted ammonium ions as a function of E/N in nitrogen. The mobility is constant up to a threshold at high E/N. Beyond this threshold, mobility increases were observed. This behavior can be explained by the loss of hydrated water molecules.}, language = {en} } @article{SeckerBrosnanLuxenhoferetal.2015, author = {Secker, Christian and Brosnan, Sarah M. and Luxenhofer, Robert and Schlaad, Helmut}, title = {Poly(alpha-Peptoid)s Revisited: Synthesis, Properties, and Use as Biomaterial}, series = {Macromolecular bioscience}, volume = {15}, journal = {Macromolecular bioscience}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201500023}, pages = {881 -- 891}, year = {2015}, abstract = {Polypeptoids have been of great interest in the polymer science community since the early half of the last century; however, they had been basically forgotten materials until the last decades in which they have enjoyed an exciting revival. In this mini-review, we focus on the recent developments in polypeptoid chemistry, with particular focus on polymers synthesized by the ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides (NCAs). Specifically, we will review traditional monomer synthesis (such as Leuchs, Katchalski, and Kricheldorf) and recent advances in polymerization methods to yield both linear, cyclic, and functional polymers, solution and bulk thermal properties, and preliminary results on the use of polypeptoids as biomaterials (i.e immunogenicity, biodistribution, degradability, and drug delivery).}, language = {en} } @article{ReynaGonzalezSchmidPetrasetal.2016, author = {Reyna-Gonz{\´a}lez, Emmanuel and Schmid, Bianca and Petras, Daniel and S{\"u}ssmuth, Roderich D. and Dittmann, Elke}, title = {Leader Peptide-Free In Vitro Reconstitution of Microviridin Biosynthesis Enables Design of Synthetic Protease-Targeted Libraries}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {55}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201604345}, pages = {9398 -- 9401}, year = {2016}, abstract = {Microviridins are a family of ribosomally synthesized and post-translationally modified peptides with a highly unusual architecture featuring non-canonical lactone as well as lactam rings. Individual variants specifically inhibit different types of serine proteases. Here we have established an efficient in vitro reconstitution approach based on two ATP-grasp ligases that were constitutively activated using covalently attached leader peptides and a GNAT-type N-acetyltransferase. The method facilitates the efficient in vitro one-pot transformation of microviridin core peptides to mature microviridins. The engineering potential of the chemo-enzymatic technology was demonstrated for two synthetic peptide libraries that were used to screen and optimize microviridin variants targeting the serine proteases trypsin and subtilisin. Successive analysis of intermediates revealed distinct structure-activity relationships for respective target proteases.}, language = {en} } @article{HaralampievMertensSchwarzeretal.2015, author = {Haralampiev, Ivan and Mertens, Monique and Schwarzer, Roland and Herrmann, Andreas and Volkmer, Rudolf and Wessig, Pablo and Mueller, Peter}, title = {Recruitment of SH-Containing peptides to lipid and biological membranes through the use of a palmitic acid functionalized with a Maleimide Group}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201408089}, pages = {323 -- 326}, year = {2015}, abstract = {This study presents a novel and easily applicable approach to recruit sulfhydryl-containing biomolecules to membranes by using a palmitic acid which is functionalized with a maleimide group. Notably, this strategy can also be employed with preformed (biological) membranes. The applicability of the assay is demonstrated by characterizing the binding of a Rhodamine-labeled peptide to lipid and cellular membranes using methods of fluorescence spectroscopy, lifetime measurement, and microscopy. Our approach offers new possibilities for preparing biologically active liposomes and manipulating living cells.}, language = {en} } @article{FedericoPiercePilusoetal.2015, author = {Federico, Stefania and Pierce, Benjamin F. and Piluso, Susanna and Wischke, Christian and Lendlein, Andreas and Neffe, Axel T.}, title = {Design of Decorin-Based Peptides That Bind to CollagenI and their Potential as Adhesion Moieties in Biomaterials}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201505227}, pages = {10980 -- 10984}, year = {2015}, abstract = {Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagenI, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine.}, language = {en} } @article{FandrichBullerMemczaketal.2017, author = {Fandrich, Artur and Buller, Jens and Memczak, Henry and Stoecklein, W. and Hinrichs, K. and Wischerhoff, E. and Schulz, B. and Laschewsky, Andr{\´e} and Lisdat, Fred}, title = {Responsive Polymer-Electrode Interface-Study of its Thermo- and pH-Sensitivity and the Influence of Peptide Coupling}, series = {Electrochimica acta : the journal of the International Society of Electrochemistry (ISE)}, volume = {229}, journal = {Electrochimica acta : the journal of the International Society of Electrochemistry (ISE)}, publisher = {Elsevier}, address = {Oxford}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.01.080}, pages = {325 -- 333}, year = {2017}, abstract = {This study introduces a thermally responsive, polymer-based electrode system. The key component is a surface-attached, temperature-responsive poly(oligoethylene glycol) methacrylate (poly(OEGMA)) type polymer bearing photoreactive benzophenone and carboxy groups containing side chains. The responsive behavior of the polymer in aqueous media has been investigated by turbidimetry measurements. Polymer films are formed on gold substrates by means of the photoreactive 2(dicyclohexylphosphino)benzophenone (DPBP) through photocrosslinking. The electrochemical behavior of the resulting polymer-substrate interface has been investigated in buffered [Fe(CN)6](3-)/[Fe (CN)6](4-)solutions at room temperature and under temperature variation by cyclic voltammetry (CV). The CV experiments show that with increasing temperature structural changes of the polymer layer occur, which alter the output of the electrochemical measurement. Repeated heating/cooling cycles analyzed by CV measurements and pH changes analyzed by quartz crystal microbalance with dissipation monitoring (QCM-D) reveal the reversible nature of the restructuring process. The immobilized films are further modified by covalent coupling of two small biomolecules - a hydrophobic peptide and a more hydrophilic one. These attached components influence the hydrophobicity of the layer in a different way the resulting change of the temperature-caused behavior has been studied by CV indicating a different state of the polymer after coupling of the hydrophobic peptide.}, language = {en} }