@article{OezkanFikriKırkıcıetal.2020, author = {{\"O}zkan, Ay{\c{s}}eg{\"u}l and Fikri, Figen Beken and K{\i}rk{\i}c{\i}, Bilal and Kliegl, Reinhold and Acart{\"u}rk, Cengiz}, title = {Eye movement control in Turkish sentence reading}, series = {Quarterly journal of experimental psychology : QJEP / EPS, Experimental Psychology Society}, volume = {74}, journal = {Quarterly journal of experimental psychology : QJEP / EPS, Experimental Psychology Society}, number = {2}, publisher = {Sage Publ.}, address = {London}, issn = {1747-0218}, doi = {10.1177/1747021820963310}, pages = {377 -- 397}, year = {2020}, abstract = {Reading requires the assembly of cognitive processes across a wide spectrum from low-level visual perception to high-level discourse comprehension. One approach of unravelling the dynamics associated with these processes is to determine how eye movements are influenced by the characteristics of the text, in particular which features of the words within the perceptual span maximise the information intake due to foveal, spillover, parafoveal, and predictive processing. One way to test the generalisability of current proposals of such distributed processing is to examine them across different languages. For Turkish, an agglutinative language with a shallow orthography-phonology mapping, we replicate the well-known canonical main effects of frequency and predictability of the fixated word as well as effects of incoming saccade amplitude and fixation location within the word on single-fixation durations with data from 35 adults reading 120 nine-word sentences. Evidence for previously reported effects of the characteristics of neighbouring words and interactions was mixed. There was no evidence for the expected Turkish-specific morphological effect of the number of inflectional suffixes on single-fixation durations. To control for word-selection bias associated with single-fixation durations, we also tested effects on word skipping, single-fixation, and multiple-fixation cases with a base-line category logit model, assuming an increase of difficulty for an increase in the number of fixations. With this model, significant effects of word characteristics and number of inflectional suffixes of foveal word on probabilities of the number of fixations were observed, while the effects of the characteristics of neighbouring words and interactions were mixed.}, language = {en} } @article{ZhouKlieglYan2013, author = {Zhou, Wei and Kliegl, Reinhold and Yan, Ming}, title = {A validation of parafoveal semantic information extraction in reading Chinese}, series = {Journal of research in reading : a journal of the United Kingdom Reading Association}, volume = {36}, journal = {Journal of research in reading : a journal of the United Kingdom Reading Association}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0141-0423}, doi = {10.1111/j.1467-9817.2013.01556.x}, pages = {S51 -- S63}, year = {2013}, abstract = {Parafoveal semantic processing has recently been well documented in reading Chinese sentences, presumably because of language-specific features. However, because of a large variation of fixation landing positions on pretarget words, some preview words actually were located in foveal vision when readers' eyes landed close to the end of the pretarget words. None of the previous studies has completely ruled out a possibility that the semantic preview effects might mainly arise from these foveally processed preview words. This case, whether previously observed positive evidence for parafoveal semantic processing can still hold, has been called into question. Using linear mixed models, we demonstrate in this study that semantic preview benefit from word N+1 decreased if fixation on pretarget word N was close to the preview. We argue that parafoveal semantic processing is not a consequence of foveally processed preview words.}, language = {en} } @article{YanZhouShuetal.2012, author = {Yan, Ming and Zhou, Wei and Shu, Hua and Kliegl, Reinhold}, title = {Lexical and sublexical semantic preview benefits in chinese reading}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {38}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {4}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0026935}, pages = {1069 -- 1075}, year = {2012}, abstract = {Semantic processing from parafoveal words is an elusive phenomenon in alphabetic languages, but it has been demonstrated only for a restricted set of noncompound Chinese characters. Using the gaze-contingent boundary paradigm, this experiment examined whether parafoveal lexical and sublexical semantic information was extracted from compound preview characters. Results generalized parafoveal semantic processing to this representative set of Chinese characters and extended the parafoveal processing to radical (sublexical) level semantic information extraction. Implications for notions of parafoveal information extraction during Chinese reading are discussed.}, language = {en} } @article{YanSommer2015, author = {Yan, Ming and Sommer, Werner}, title = {Parafoveal-on-Foveal Effects of Emotional Word Semantics in Reading Chinese Sentences: Evidence From Eye Movements}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {41}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {4}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/xlm0000095}, pages = {1237 -- 1243}, year = {2015}, abstract = {Despite the well-known influence of emotional meaning on cognition, relatively less is known about its effects on reading behavior. We investigated whether fixation behavior during the reading of Chinese sentences is influenced by emotional word meaning in the parafovea. Two-character target words embedded into the same sentence frames provided emotionally positive, negative, or neutral contents. Fixation durations on neutral pretarget words were prolonged for positive parafoveal words and for highly frequent negative parafoveal words. In addition, fixation durations on foveal emotional words were shorter than those on neutral words. We also found that the role of emotional words varied as a function of their valence during foveal and parafoveal processing. These findings suggest a processing advantage for emotional words relative to emotionally neutral stimuli in foveal and parafoveal vision. We discuss implications for the notion of attention attraction due to emotional content.}, language = {en} } @article{YanPanKliegl2019, author = {Yan, Ming and Pan, Jinger and Kliegl, Reinhold}, title = {Eye Movement Control in Chinese Reading: A Cross-Sectional Study}, series = {Developmental psychology}, volume = {55}, journal = {Developmental psychology}, number = {11}, publisher = {American Psychological Association}, address = {Washington}, issn = {0012-1649}, doi = {10.1037/dev0000819}, pages = {2275 -- 2285}, year = {2019}, abstract = {The present study explored the age-related changes of eye movement control in reading-that is, where to send the eyes and when to move them. Different orthographies present readers with somewhat different problems to solve, and this might, in turn, be reflected in different patterns of development of reading skill. Participants of different developmental levels (Grade 3, N = 30; Grade 5, N = 27 and adults, N = 27) were instructed to read sentences for comprehension while their eye movements were recorded. Contrary to previous findings that have been well documented indicating early maturation of saccade generation in English, current results showed that saccade generation among Chinese readers was still under development at Grade 5, although immediate lexical processing was relatively well-established. The distinct age-related changes in eye movements are attributable to certain linguistic properties of Chinese including the lack of interword spaces and word boundary uncertainty. The present study offers an example of how human eye movement adapts to the orthographic environment.}, language = {en} } @article{StonevonderMalsburgVasishth2020, author = {Stone, Kate and von der Malsburg, Titus Raban and Vasishth, Shravan}, title = {The effect of decay and lexical uncertainty on processing long-distance dependencies in reading}, series = {PeerJ}, volume = {8}, journal = {PeerJ}, publisher = {PeerJ Inc.}, address = {London}, issn = {2167-8359}, doi = {10.7717/peerj.10438}, pages = {33}, year = {2020}, abstract = {To make sense of a sentence, a reader must keep track of dependent relationships between words, such as between a verb and its particle (e.g. turn the music down). In languages such as German, verb-particle dependencies often span long distances, with the particle only appearing at the end of the clause. This means that it may be necessary to process a large amount of intervening sentence material before the full verb of the sentence is known. To facilitate processing, previous studies have shown that readers can preactivate the lexical information of neighbouring upcoming words, but less is known about whether such preactivation can be sustained over longer distances. We asked the question, do readers preactivate lexical information about long-distance verb particles? In one self-paced reading and one eye tracking experiment, we delayed the appearance of an obligatory verb particle that varied only in the predictability of its lexical identity. We additionally manipulated the length of the delay in order to test two contrasting accounts of dependency processing: that increased distance between dependent elements may sharpen expectation of the distant word and facilitate its processing (an antilocality effect), or that it may slow processing via temporal activation decay (a locality effect). We isolated decay by delaying the particle with a neutral noun modifier containing no information about the identity of the upcoming particle, and no known sources of interference or working memory load. Under the assumption that readers would preactivate the lexical representations of plausible verb particles, we hypothesised that a smaller number of plausible particles would lead to stronger preactivation of each particle, and thus higher predictability of the target. This in turn should have made predictable target particles more resistant to the effects of decay than less predictable target particles. The eye tracking experiment provided evidence that higher predictability did facilitate reading times, but found evidence against any effect of decay or its interaction with predictability. The self-paced reading study provided evidence against any effect of predictability or temporal decay, or their interaction. In sum, we provide evidence from eye movements that readers preactivate long-distance lexical content and that adding neutral sentence information does not induce detectable decay of this activation. The findings are consistent with accounts suggesting that delaying dependency resolution may only affect processing if the intervening information either confirms expectations or adds to working memory load, and that temporal activation decay alone may not be a major predictor of processing time.}, language = {en} } @article{SeeligRabeMalemShinitskietal.2020, author = {Seelig, Stefan A. and Rabe, Maximilian Michael and Malem-Shinitski, Noa and Risse, Sarah and Reich, Sebastian and Engbert, Ralf}, title = {Bayesian parameter estimation for the SWIFT model of eye-movement control during reading}, series = {Journal of mathematical psychology}, volume = {95}, journal = {Journal of mathematical psychology}, publisher = {Elsevier}, address = {San Diego}, issn = {0022-2496}, doi = {10.1016/j.jmp.2019.102313}, pages = {32}, year = {2020}, abstract = {Process-oriented theories of cognition must be evaluated against time-ordered observations. Here we present a representative example for data assimilation of the SWIFT model, a dynamical model of the control of fixation positions and fixation durations during natural reading of single sentences. First, we develop and test an approximate likelihood function of the model, which is a combination of a spatial, pseudo-marginal likelihood and a temporal likelihood obtained by probability density approximation Second, we implement a Bayesian approach to parameter inference using an adaptive Markov chain Monte Carlo procedure. Our results indicate that model parameters can be estimated reliably for individual subjects. We conclude that approximative Bayesian inference represents a considerable step forward for computational models of eye-movement control, where modeling of individual data on the basis of process-based dynamic models has not been possible so far.}, language = {en} } @phdthesis{Seelig2021, author = {Seelig, Stefan}, title = {Parafoveal processing of lexical information during reading}, doi = {10.25932/publishup-50874}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-508743}, school = {Universit{\"a}t Potsdam}, pages = {xi, 113}, year = {2021}, abstract = {During sentence reading the eyes quickly jump from word to word to sample visual information with the high acuity of the fovea. Lexical properties of the currently fixated word are known to affect the duration of the fixation, reflecting an interaction of word processing with oculomotor planning. While low level properties of words in the parafovea can likewise affect the current fixation duration, results concerning the influence of lexical properties have been ambiguous (Drieghe, Rayner, \& Pollatsek, 2008; Kliegl, Nuthmann, \& Engbert, 2006). Experimental investigations of such lexical parafoveal-on-foveal effects using the boundary paradigm have instead shown, that lexical properties of parafoveal previews affect fixation durations on the upcoming target words (Risse \& Kliegl, 2014). However, the results were potentially confounded with effects of preview validity. The notion of parafoveal processing of lexical information challenges extant models of eye movements during reading. Models containing serial word processing assumptions have trouble explaining such effects, as they usually couple successful word processing to saccade planning, resulting in skipping of the parafoveal word. Although models with parallel word processing are less restricted, in the SWIFT model (Engbert, Longtin, \& Kliegl, 2002) only processing of the foveal word can directly influence the saccade latency. Here we combine the results of a boundary experiment (Chapter 2) with a predictive modeling approach using the SWIFT model, where we explore mechanisms of parafoveal inhibition in a simulation study (Chapter 4). We construct a likelihood function for the SWIFT model (Chapter 3) and utilize the experimental data in a Bayesian approach to parameter estimation (Chapter 3 \& 4). The experimental results show a substantial effect of parafoveal preview frequency on fixation durations on the target word, which can be clearly distinguished from the effect of preview validity. Using the eye movement data from the participants, we demonstrate the feasibility of the Bayesian approach even for a small set of estimated parameters, by comparing summary statistics of experimental and simulated data. Finally, we can show that the SWIFT model can account for the lexical preview effects, when a mechanism for parafoveal inhibition is added. The effects of preview validity were modeled best, when processing dependent saccade cancellation was added for invalid trials. In the simulation study only the control condition of the experiment was used for parameter estimation, allowing for cross validation. Simultaneously the number of free parameters was increased. High correlations of summary statistics demonstrate the capabilities of the parameter estimation approach. Taken together, the results advocate for a better integration of experimental data into computational modeling via parameter estimation.}, language = {en} } @article{SchottervonderMalsburgLeinenger2019, author = {Schotter, Elizabeth Roye and von der Malsburg, Titus Raban and Leinenger, Mallorie}, title = {Forced Fixations, Trans-Saccadic Integration, and Word Recognition}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {45}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {4}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/xlm0000617}, pages = {677 -- 688}, year = {2019}, abstract = {Recent studies using the gaze-contingent boundary paradigm reported a reversed preview benefit- shorter fixations on a target word when an unrelated preview was easier to process than the fixated target (Schotter \& Leinenger, 2016). This is explained viaforeedfixatiotzs-short fixations on words that would ideally be skipped (because lexical processing has progressed enough) but could not be because saccade planning reached a point of no return. This contrasts with accounts of preview effects via trans-saccadic integration-shorter fixations on a target word when the preview is more similar to it (see Cutter. Drieghe, \& Liversedge, 2015). In addition, if the previewed word-not the fixated target-determines subsequent eye movements, is it also this word that enters the linguistic processing stream? We tested these accounts by having 24 subjects read 150 sentences in the boundary paradigm in which both the preview and target were initially plausible but later one, both, or neither became implausible, providing an opportunity to probe which one was linguistically encoded. In an intervening buffer region, both words were plausible, providing an opportunity to investigate trans-saccadic integration. The frequency of the previewed word affected progressive saccades (i.e.. forced fixations) as well as when transsaccadic integration failure increased regressions, but, only the implausibility of the target word affected semantic encoding. These data support a hybrid account of saccadic control (Reingold, Reichle. Glaholt, \& Sheridan, 2012) driven by incomplete (often parafoveal) word recognition, which occurs prior to complete (often foveal) word recognition.}, language = {en} } @article{RisseSeelig2019, author = {Risse, Sarah and Seelig, Stefan}, title = {Stable preview difficulty effects in reading with an improved variant of the boundary paradigm}, series = {The quarterly journal of experimental psychology}, volume = {72}, journal = {The quarterly journal of experimental psychology}, number = {7}, publisher = {Sage Publ.}, address = {London}, issn = {1747-0218}, doi = {10.1177/1747021818819990}, pages = {1632 -- 1645}, year = {2019}, abstract = {Using gaze-contingent display changes in the boundary paradigm during sentence reading, it has recently been shown that parafoveal word-processing difficulties affect fixations on words to the right of the boundary. Current interpretations of this post-boundary preview difficulty effect range from delayed parafoveal-on-foveal effects in parallel word-processing models to forced fixations in serial word-processing models. However, these findings are based on an experimental design that, while allowing to isolate preview difficulty effects, might have established a bias with respect to asymmetries in parafoveal preview benefit for high-frequent and low-frequent target words. Here, we present a revision of this paradigm varying the preview's lexical frequency and keeping the target word constant. We found substantial effects of the preview difficulty in fixation durations after the boundary confirming that preview processing affects the oculomotor decisions not only via trans-saccadic integration of preview and target word information. An additional time-course analysis showed that the preview difficulty effect was significant across the full fixation duration distribution on the target word without any evidence on the pretarget word before the boundary. We discuss implications of the accumulating evidence of post-boundary preview difficulty effects for models of eye movement control during reading.}, language = {en} } @phdthesis{Risse2011, author = {Risse, Sarah}, title = {Processing in the perceptual span : investigations with the n+2-boundary paradigm}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60414}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Cognitive psychology is traditionally interested in the interaction of perception, cognition, and behavioral control. Investigating eye movements in reading constitutes a field of research in which the processes and interactions of these subsystems can be studied in a well-defined environment. Thereby, the following questions are pursued: How much information is visually perceived during a fixation, how is processing achieved and temporally coordinated from visual letter encoding to final sentence comprehension, and how do such processes reflect on behavior such as the control of the eyes' movements during reading. Various theoretical models have been proposed to account for the specific eye-movement behavior in reading (for a review see Reichle, Rayner, \& Pollatsek, 2003). Some models are based on the idea of shifting attention serially from one word to the next within the sentence whereas others propose distributed attention allocating processing resources to more than one word at a time. As attention is assumed to drive word recognition processes one major difference between these models is that word processing must either occur in strict serial order, or that word processing is achieved in parallel. In spite of this crucial difference in the time course of word processing, both model classes perform well on explaining many of the benchmark effects in reading. In fact, there seems to be not much empirical evidence that challenges the models to a point at which their basic assumptions could be falsified. One issue often perceived as being decisive in the debate on serial and parallel word processing is how not-yet-fixated words to the right of fixation affect eye movements. Specifically, evidence is discussed as to what spatial extent such parafoveal words are previewed and how this influences current and subsequent word processing. Four experiments investigated parafoveal processing close to the spatial limits of the perceptual span. The present work aims to go beyond mere existence proofs of previewing words at such spatial distances. Introducing a manipulation that dissociates the sources of long-range preview effects, benefits and costs of parafoveal processing can be investigated in a single analysis and the differing impact is tracked across a three-word target region. In addition, the same manipulation evaluates the role of oculomotor error as the cause of non-local distributed effects. In this respect, the results contribute to a better understanding of the time course of word processing inside the perceptual span and attention allocation during reading.}, language = {en} } @article{Risse2014, author = {Risse, Sarah}, title = {Effects of visual span on reading speed and parafoveal processing in eye movements during sentence reading}, series = {Journal of vision}, volume = {14}, journal = {Journal of vision}, number = {8}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/14.8.11}, pages = {13}, year = {2014}, language = {en} } @phdthesis{Rabe2024, author = {Rabe, Maximilian Michael}, title = {Modeling the interaction of sentence processing and eye-movement control in reading}, doi = {10.25932/publishup-62279}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622792}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 171}, year = {2024}, abstract = {The evaluation of process-oriented cognitive theories through time-ordered observations is crucial for the advancement of cognitive science. The findings presented herein integrate insights from research on eye-movement control and sentence comprehension during reading, addressing challenges in modeling time-ordered data, statistical inference, and interindividual variability. Using kernel density estimation and a pseudo-marginal likelihood for fixation durations and locations, a likelihood implementation of the SWIFT model of eye-movement control during reading (Engbert et al., Psychological Review, 112, 2005, pp. 777-813) is proposed. Within the broader framework of data assimilation, Bayesian parameter inference with adaptive Markov Chain Monte Carlo techniques is facilitated for reliable model fitting. Across the different studies, this framework has shown to enable reliable parameter recovery from simulated data and prediction of experimental summary statistics. Despite its complexity, SWIFT can be fitted within a principled Bayesian workflow, capturing interindividual differences and modeling experimental effects on reading across different geometrical alterations of text. Based on these advancements, the integrated dynamical model SEAM is proposed, which combines eye-movement control, a traditionally psychological research area, and post-lexical language processing in the form of cue-based memory retrieval (Lewis \& Vasishth, Cognitive Science, 29, 2005, pp. 375-419), typically the purview of psycholinguistics. This proof-of-concept integration marks a significant step forward in natural language comprehension during reading and suggests that the presented methodology can be useful to develop complex cognitive dynamical models that integrate processes at levels of perception, higher cognition, and (oculo-)motor control. These findings collectively advance process-oriented cognitive modeling and highlight the importance of Bayesian inference, individual differences, and interdisciplinary integration for a holistic understanding of reading processes. Implications for theory and methodology, including proposals for model comparison and hierarchical parameter inference, are briefly discussed.}, language = {en} } @misc{PaulyNottbusch2020, author = {Pauly, Dennis Nikolas and Nottbusch, Guido}, title = {The Influence of the German Capitalization Rules on Reading}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {622}, issn = {1866-8364}, doi = {10.25932/publishup-46085}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460857}, pages = {17}, year = {2020}, abstract = {German orthography systematically marks all nouns (even other nominalized word classes) by capitalizing their first letter. It is often claimed that readers benefit from the uppercase-letter syntactic and semantic information, which makes the processing of sentences easier (e.g., Bock et al., 1985, 1989). In order to test this hypothesis, we asked 54 German readers to read single sentences systematically manipulated by a target word (N). In the experimental condition (EXP), we used semantic priming (in the following example: sick → cold) in order to build up a strong expectation of a noun, which was actually an attribute for the following noun (N+1) (translated to English e.g., "The sick writer had a cold (N) nose (N+1) …"). The sentences in the control condition were built analogously, but word N was purposefully altered (keeping word length and frequency constant) to make its interpretation as a noun extremely unlikely (e.g., "The sick writer had a blue (N) nose (N+1) …"). In both conditions, the sentences were presented either following German standard orthography (Cap) or in lowercase spelling (NoCap). The capitalized nouns in the EXP/Cap condition should then prevent garden-path parsing, as capital letters can be recognized parafoveally. However, in the EXP/NoCap condition, we expected a garden-path effect on word N+1 affecting first-pass fixations and the number of regressions, as the reader realizes that word N is instead an adjective. As the control condition does not include a garden-path, we expected to find (small) effects of the violation of the orthographic rule in the CON/NoCap condition, but no garden-path effect. As a global result, it can be stated that reading sentences in which nouns are not marked by a majuscule slows a native German reader down significantly, but from an absolute point of view, the effect is small. Compared with other manipulations (e.g., transpositions or substitutions), a lowercase letter still represents the correct allograph in the correct position without affecting phonology. Furthermore, most German readers do have experience with other alphabetic writing systems that lack consistent noun capitalization, and in (private) digital communication lowercase nouns are quite common. Although our garden-path sentences did not show the desired effect, we found an indication of grammatical pre-processing enabled by the majuscule in the regularly spelled sentences: In the case of high noun frequency, we post hoc located parafovea-on-fovea effects, i.e., longer fixation durations, on the attributive adjective (word N). These benefits of capitalization could only be detected under specific circumstances. In other cases, we conclude that longer reading durations are mainly the result of disturbance in readers' habituation when the expected capitalization is missing.}, language = {en} } @article{PaulyNottbusch2020, author = {Pauly, Dennis Nikolas and Nottbusch, Guido}, title = {The Influence of the German Capitalization Rules on Reading}, series = {Frontiers in Communication}, volume = {5}, journal = {Frontiers in Communication}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2297-900X}, doi = {10.3389/fcomm.2020.00015}, pages = {15}, year = {2020}, abstract = {German orthography systematically marks all nouns (even other nominalized word classes) by capitalizing their first letter. It is often claimed that readers benefit from the uppercase-letter syntactic and semantic information, which makes the processing of sentences easier (e.g., Bock et al., 1985, 1989). In order to test this hypothesis, we asked 54 German readers to read single sentences systematically manipulated by a target word (N). In the experimental condition (EXP), we used semantic priming (in the following example: sick -> cold) in order to build up a strong expectation of a noun, which was actually an attribute for the following noun (N+1) (translated to English e.g., "The sick writer had a cold (N) nose (N+1) ..."). The sentences in the control condition were built analogously, but word N was purposefully altered (keeping word length and frequency constant) to make its interpretation as a noun extremely unlikely (e.g., "The sick writer had a blue (N) nose (N+1) ..."). In both conditions, the sentences were presented either following German standard orthography (Cap) or in lowercase spelling (NoCap). The capitalized nouns in the EXP/Cap condition should then prevent garden-path parsing, as capital letters can be recognized parafoveally. However, in the EXP/NoCap condition, we expected a garden-path effect on word N+1 affecting first-pass fixations and the number of regressions, as the reader realizes that word N is instead an adjective. As the control condition does not include a garden-path, we expected to find (small) effects of the violation of the orthographic rule in the CON/NoCap condition, but no garden-path effect. As a global result, it can be stated that reading sentences in which nouns are not marked by a majuscule slows a native German reader down significantly, but from an absolute point of view, the effect is small. Compared with other manipulations (e.g., transpositions or substitutions), a lowercase letter still represents the correct allograph in the correct position without affecting phonology. Furthermore, most German readers do have experience with other alphabetic writing systems that lack consistent noun capitalization, and in (private) digital communication lowercase nouns are quite common. Although our garden-path sentences did not show the desired effect, we found an indication of grammatical pre-processing enabled by the majuscule in the regularly spelled sentences: In the case of high noun frequency, we post hoc located parafovea-on-fovea effects, i.e., longer fixation durations, on the attributive adjective (word N). These benefits of capitalization could only be detected under specific circumstances. In other cases, we conclude that longer reading durations are mainly the result of disturbance in readers' habituation when the expected capitalization is missing.}, language = {en} } @article{PaulyNottbusch2020, author = {Pauly, Dennis Nikolas and Nottbusch, Guido}, title = {The Influence of the German Capitalization Rules on Reading}, series = {Frontiers in Communication}, volume = {5}, journal = {Frontiers in Communication}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2297-900X}, doi = {10.3389/fcomm.2020.00015}, pages = {15}, year = {2020}, abstract = {German orthography systematically marks all nouns (even other nominalized word classes) by capitalizing their first letter. It is often claimed that readers benefit from the uppercase-letter syntactic and semantic information, which makes the processing of sentences easier (e.g., Bock et al., 1985, 1989). In order to test this hypothesis, we asked 54 German readers to read single sentences systematically manipulated by a target word (N). In the experimental condition (EXP), we used semantic priming (in the following example: sick → cold) in order to build up a strong expectation of a noun, which was actually an attribute for the following noun (N+1) (translated to English e.g., "The sick writer had a cold (N) nose (N+1) …"). The sentences in the control condition were built analogously, but word N was purposefully altered (keeping word length and frequency constant) to make its interpretation as a noun extremely unlikely (e.g., "The sick writer had a blue (N) nose (N+1) …"). In both conditions, the sentences were presented either following German standard orthography (Cap) or in lowercase spelling (NoCap). The capitalized nouns in the EXP/Cap condition should then prevent garden-path parsing, as capital letters can be recognized parafoveally. However, in the EXP/NoCap condition, we expected a garden-path effect on word N+1 affecting first-pass fixations and the number of regressions, as the reader realizes that word N is instead an adjective. As the control condition does not include a garden-path, we expected to find (small) effects of the violation of the orthographic rule in the CON/NoCap condition, but no garden-path effect. As a global result, it can be stated that reading sentences in which nouns are not marked by a majuscule slows a native German reader down significantly, but from an absolute point of view, the effect is small. Compared with other manipulations (e.g., transpositions or substitutions), a lowercase letter still represents the correct allograph in the correct position without affecting phonology. Furthermore, most German readers do have experience with other alphabetic writing systems that lack consistent noun capitalization, and in (private) digital communication lowercase nouns are quite common. Although our garden-path sentences did not show the desired effect, we found an indication of grammatical pre-processing enabled by the majuscule in the regularly spelled sentences: In the case of high noun frequency, we post hoc located parafovea-on-fovea effects, i.e., longer fixation durations, on the attributive adjective (word N). These benefits of capitalization could only be detected under specific circumstances. In other cases, we conclude that longer reading durations are mainly the result of disturbance in readers' habituation when the expected capitalization is missing.}, language = {en} } @article{ParshinaLaurinavichyuteSekerina2021, author = {Parshina, Olga and Laurinavichyute, Anna and Sekerina, Irina A.}, title = {Eye-movement benchmarks in heritage language reading}, series = {Bilingualism : language and cognition}, volume = {24}, journal = {Bilingualism : language and cognition}, number = {1}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1366-7289}, doi = {10.1017/S136672892000019X}, pages = {69 -- 82}, year = {2021}, abstract = {This eye-tracking study establishes basic benchmarks of eye movements during reading in heritage language (HL) by Russian-speaking adults and adolescents of high (n = 21) and low proficiency (n = 27). Heritage speakers (HSs) read sentences in Cyrillic, and their eye movements were compared to those of Russian monolingual skilled adult readers, 8-year-old children and L2 learners. Reading patterns of HSs revealed longer mean fixation durations, lower skipping probabilities, and higher regressive saccade rates than in monolingual adults. High-proficient HSs were more similar to monolingual children, while low-proficient HSs performed on par with L2 learners. Low-proficient HSs differed from high-proficient HSs in exhibiting lower skipping probabilities, higher fixation counts, and larger frequency effects. Taken together, our findings are consistent with the weaker links account of bilingual language processing as well as the divergent attainment theory of HL.}, language = {en} } @phdthesis{Nuthmann2005, author = {Nuthmann, Antje}, title = {The "where" and "when" of eye fixations in reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7931}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {To investigate eye-movement control in reading, the present thesis examined three phenomena related to the eyes' landing position within words, (1) the optimal viewing position (OVP), (2) the preferred viewing location (PVL), and (3) the Fixation-Duration Inverted-Optimal Viewing Position (IOVP) Effect. Based on a corpus-analytical approach (Exp. 1), the influence of variables word length, launch site distance, and word frequency was systematically explored. In addition, five experimental manipulations were conducted. First, word center was identified as the OVP, that is the position within a word where refixation probability is minimal. With increasing launch site distance, however, the OVP was found to move towards the word beginning. Several possible causes of refixations were discussed. The issue of refixation saccade programming was extensively investigated, suggesting that pre-planned and directly controlled refixation saccades coexist. Second, PVL curves, that is landing position distributions, show that the eyes are systematically deviated from the OVP, due to visuomotor constraints. By far the largest influence on mean and standard deviation of the Gaussian PVL curve was exhibited by launch site distance. Third, it was investigated how fixation durations vary as a function of landing position. The IOVP effect was replicated: Fixations located at word center are longer than those falling near the edges of a word. The effect of word frequency and/or launch site distance on the IOVP function mainly consisted in a vertical displacement of the curve. The Fixation-Duration IOVP effect is intriguing because word center (the OVP) would appear to be the best place to fixate and process a word. A critical part of the current work was devoted to investigate the origin of the effect. It was suggested that the IOVP effect arises as a consequence of mislocated fixations, i.e. fixations on unintended words, which are caused by saccadic errors. An algorithm for estimating the proportion of mislocated fixations from empirical data was developed, based on extrapolations of landing position distributions beyond word boundaries. As a new central theoretical claim it was suggested that a new saccade program is started immediately if the intended target word is missed. On average, this will lead to decreased durations for mislocated fixations. Because mislocated fixations were shown to be most prevalent at the beginning and end of words, the proposed mechanism generated the inverted U-shape for fixation durations when computed as a function of landing position. The proposed mechanism for generating the effect is generally compatible with both oculomotor and cognitive models of eye-movement control in reading.}, subject = {Allgemeine Psychologie}, language = {en} } @article{MeixnerNixonLaubrock2022, author = {Meixner, Johannes M. and Nixon, Jessie S. and Laubrock, Jochen}, title = {The perceptual span is dynamically adjusted in response to foveal load by beginning readers}, series = {Journal of experimental psychology : general}, volume = {151}, journal = {Journal of experimental psychology : general}, number = {6}, publisher = {American Psychological Association}, address = {Washington}, issn = {0096-3445}, doi = {10.1037/xge0001140}, pages = {1219 -- 1232}, year = {2022}, abstract = {The perceptual span describes the size of the visual field from which information is obtained during a fixation in reading. Its size depends on characteristics of writing system and reader, but-according to the foveal load hypothesis-it is also adjusted dynamically as a function of lexical processing difficulty. Using the moving window paradigm to manipulate the amount of preview, here we directly test whether the perceptual span shrinks as foveal word difficulty increases. We computed the momentary size of the span from word-based eye-movement measures as a function of foveal word frequency, allowing us to separately describe the perceptual span for information affecting spatial saccade targeting and temporal saccade execution. First fixation duration and gaze duration on the upcoming (parafoveal) word N + 1 were significantly shorter when the current (foveal) word N was more frequent. We show that the word frequency effect is modulated by window size. Fixation durations on word N + 1 decreased with high-frequency words N, but only for large windows, that is, when sufficient parafoveal preview was available. This provides strong support for the foveal load hypothesis. To investigate the development of the foveal load effect, we analyzed data from three waves of a longitudinal study on the perceptual span with German children in Grades 1 to 6. Perceptual span adjustment emerged early in development at around second grade and remained stable in later grades. We conclude that the local modulation of the perceptual span indicates a general cognitive process, perhaps an attentional gradient with rapid readjustment.}, language = {en} } @article{LiWangMoetal.2018, author = {Li, Nan and Wang, Suiping and Mo, Luxi and Kliegl, Reinhold}, title = {Contextual constraint and preview time modulate the semantic preview effect}, series = {The quarterly journal of experimental psychology}, volume = {71}, journal = {The quarterly journal of experimental psychology}, number = {1}, publisher = {Sage Publ.}, address = {London}, issn = {1747-0218}, doi = {10.1080/17470218.2017.1310914}, pages = {241 -- 249}, year = {2018}, abstract = {Word recognition in sentence reading is influenced by information from both preview and context. Recently, semantic preview effect (SPE) was observed being modulated by the constraint of context, indicating that context might accelerate the processing of semantically related preview words. Besides, SPE was found to depend on preview time, which suggests that SPE may change with different processing stages of preview words. Therefore, it raises the question of whether preview time-dependent SPE would be modulated by contextual constraint. In this study, we not only investigated the impact of contextual constraint on SPE in Chinese reading but also examined its dependency on preview time. The preview word and the target word were identical, semantically related or unrelated to the target word. The results showed a significant three-way interaction: The SPE depended on contextual constraint and preview time. In separate analyses for low and high contextual constraint of target words, the SPE significantly decreased with an increase in preview duration when the target word was of low constraint in the sentence. The effect was numerically in the same direction but weaker and statistically nonsignificant when the target word was highly constrained in the sentence. The results indicate that word processing in sentences is a dynamic process of integrating information from both preview (bottom-up) and context (top-down).}, language = {en} }