@phdthesis{Georgieva2016, author = {Georgieva, Viktoria}, title = {Neotectonics \& Cooling History of the Southern Patagonian Andes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-104185}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 200 Seiten}, year = {2016}, abstract = {The collision of bathymetric anomalies, such as oceanic spreading centers, at convergent plate margins can profoundly affect subduction dynamics, magmatism, and the structural and geomorphic evolution of the overriding plate. The Southern Patagonian Andes of South America are a prime example for sustained oceanic ridge collision and the successive formation and widening of an extensive asthenospheric slab window since the Middle Miocene. Several of the predicted upper-plate geologic manifestations of such deep-seated geodynamic processes have been studied in this region, but many topics remain highly debated. One of the main controversial topics is the interpretation of the regional low-temperature thermochronology exhumational record and its relationship with tectonic and/or climate-driven processes, ultimately manifested and recorded in the landscape evolution of the Patagonian Andes. The prominent along-strike variance in the topographic characteristics of the Andes, combined with coupled trends in low-temperature thermochronometer cooling ages have been interpreted in very contrasting ways, considering either purely climatic (i.e. glacial erosion) or geodynamic (slab-window related) controlling factors. This thesis focuses on two main aspects of these controversial topics. First, based on field observations and bedrock low-temperature thermochronology data, the thesis addresses an existing research gap with respect to the neotectonic activity of the upper plate in response to ridge collision - a mechanism that has been shown to affect the upper plate topography and exhumational patterns in similar tectonic settings. Secondly, the qualitative interpretation of my new and existing thermochronological data from this region is extended by inverse thermal modelling to define thermal histories recorded in the data and evaluate the relative importance of surface vs. geodynamic factors and their possible relationship with the regional cooling record. My research is centered on the Northern Patagonian Icefield (NPI) region of the Southern Patagonian Andes. This site is located inboard of the present-day location of the Chile Triple Junction - the juncture between the colliding Chile Rise spreading center and the Nazca and Antarctic Plates along the South American convergent margin. As such this study area represents the region of most recent oceanic-ridge collision and associated slab window formation. Importantly, this location also coincides with the abrupt rise in summit elevations and relief characteristics in the Southern Patagonian Andes. Field observations, based on geological, structural and geomorphic mapping, are combined with bedrock apatite (U-Th)/He and apatite fission track (AHe and AFT) cooling ages sampled along elevation transects across the orogen. This new data reveals the existence of hitherto unrecognized neotectonic deformation along the flanks of the range capped by the NPI. This deformation is associated with the closely spaced oblique collision of successive oceanic-ridge segments in this region over the past 6 Ma. I interpret that this has caused a crustal-scale partitioning of deformation and the decoupling, margin-parallel migration, and localized uplift of a large crustal sliver (the NPI block) along the subduction margin. The location of this uplift coincides with a major increase of summit elevations and relief at the northern edge of the NPI massif. This mechanism is compatible with possible extensional processes along the topographically subdued trailing edge of the NPI block as documented by very recent and possibly still active normal faulting. Taken together, these findings suggest a major structural control on short-wavelength variations in topography in the Southern Patagonian Andes - the region affected by ridge collision and slab window formation. The second research topic addressed here focuses on using my new and existing bedrock low-temperature cooling ages in forward and inverse thermal modeling. The data was implemented in the HeFTy and QTQt modeling platforms to constrain the late Cenozoic thermal history of the Southern Patagonian Andes in the region of the most recent upper-plate sectors of ridge collision. The data set combines AHe and AFT data from three elevation transects in the region of the Northern Patagonian Icefield. Previous similar studies claimed far-reaching thermal effects of the approaching ridge collision and slab window to affect patterns of Late Miocene reheating in the modelled thermal histories. In contrast, my results show that the currently available data can be explained with a simpler thermal history than previously proposed. Accordingly, a reheating event is not needed to reproduce the observations. Instead, the analyzed ensemble of modelled thermal histories defines a Late Miocene protracted cooling and Pliocene-to-recent stepwise exhumation. These findings agree with the geological record of this region. Specifically, this record indicates an Early Miocene phase of active mountain building associated with surface uplift and an active fold-and-thrust belt, followed by a period of stagnating deformation, peneplanation, and lack of synorogenic deposition in the Patagonian foreland. The subsequent period of stepwise exhumation likely resulted from a combination of pulsed glacial erosion and coeval neotectonic activity. The differences between the present and previously published interpretation of the cooling record can be reconciled with important inconsistencies of previously used model setup. These include mainly the insufficient convergence of the models and improper assumptions regarding the geothermal conditions in the region. This analysis puts a methodological emphasis on the prime importance of the model setup and the need for its thorough examination to evaluate the robustness of the final outcome.}, language = {en} }