@article{VillatoroZuehlkeRiebeetal.2016, author = {Villatoro, Jos{\´e} Andr{\´e}s and Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and Weber, Marcus and Riedel, Jens and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {IR-MALDI ion mobility spectrometry: physical source characterization and application as HPLC detector}, series = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, volume = {19}, journal = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, publisher = {Springer}, address = {Heidelberg}, issn = {1435-6163}, doi = {10.1007/s12127-016-0208-1}, pages = {197 -- 207}, year = {2016}, abstract = {Infrared matrix-assisted laser dispersion and ionization (IR-MALDI) in combination with ion mobility (IM) spectrometry enables the direct analysis of biomolecules in aqueous solution. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse, which disperses the liquid as vapor, nano-and micro-droplets. The ionization process is characterized initially by a broad spatial distribution of the ions, which is a result of complex fluid dynamics and desolvation kinetics. These processes have a profound effect on the shape and width of the peaks in the IM spectra. In this work, the transport of ions by the phase explosion-induced shockwave could be studied independently from the transport by the electric field. The shockwave-induced mean velocities of the ions at different time scales were determined through IM spectrometry and shadowgraphy. The results show a deceleration of the ions from 118 m.s(-1) at a distance of 400 mu m from the liquid surface to 7.1 m.s(-1) at a distance of 10 mm, which is caused by a pile-up effect. Furthermore, the desolvation kinetics were investigated and a first-order desolvation constant of 325 +/- 50 s(-1) was obtained. In the second part, the IR-MALDI-IM spectrometer is used as an HPLC detector for the two-dimensional separation of a pesticide mixture.}, language = {en} } @phdthesis{Zuehlke2017, author = {Z{\"u}hlke, Martin}, title = {Elektrosprayionisation Ionenmobilit{\"a}tsspektrometrie}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407452}, school = {Universit{\"a}t Potsdam}, pages = {viii, 113, XIV}, year = {2017}, abstract = {Die Elektrosprayionisation (ESI) ist eine der weitverbreitetsten Ionisationstechniken f{\"u}r fl{\"u}ssige Pro-ben in der Massen- und Ionenmobilit{\"a}ts(IM)-Spektrometrie. Aufgrund ihrer schonenden Ionisierung wird ESI vorwiegend f{\"u}r empfindliche, komplexe Molek{\"u}le in der Biologie und Medizin eingesetzt. {\"U}berdies ist sie allerdings f{\"u}r ein sehr breites Spektrum an Substanzklassen anwendbar. Die IM-Spektrometrie wurde urspr{\"u}nglich zur Detektion gasf{\"o}rmiger Proben entwickelt, die haupts{\"a}chlich durch radioaktive Quellen ionisiert werden. Sie ist die einzige analytische Methode, bei der Isomere in Echtzeit getrennt und {\"u}ber ihre charakteristische IM direkt identifiziert werden k{\"o}nnen. ESI wurde in den 90ger Jahren durch die Hill Gruppe in die IM-Spektrometrie eingef{\"u}hrt. Die Kombination wird bisher jedoch nur von wenigen Gruppen verwendet und hat deshalb noch ein hohes Entwick-lungspotential. Ein vielversprechendes Anwendungsfeld ist der Einsatz in der Hochleistungs-fl{\"u}ssigkeitschromatographie (HPLC) zur mehrdimensionalen Trennung. Heutzutage ist die HPLC die Standardmethode zur Trennung komplexer Proben in der Routineanalytik. HPLC-Trennungsg{\"a}nge sind jedoch h{\"a}ufig langwierig und der Einsatz verschiedener Laufmittel, hoher Flussraten, von Puffern, sowie Laufmittelgradienten stellt hohe Anforderungen an die Detektoren. Die ESI-IM-Spektrometrie wurde in einigen Studien bereits als HPLC-Detektor eingesetzt, war dort bisher jedoch auf Flussratensplitting oder geringe Flussraten des Laufmittels beschr{\"a}nkt. In dieser kumulativen Doktorarbeit konnte daher erstmals ein ESI IM-Spektrometer als HPLC-Detektor f{\"u}r den Flussratenbereich von 200-1500 μl/min entwickelt werden. Anhand von f{\"u}nf Publi-kationen wurden (1) {\"u}ber eine umfassende Charakterisierung die Eignung des Spektrometers als HPLC-Detektor festgestellt, (2) ausgew{\"a}hlte komplexe Trenng{\"a}nge pr{\"a}sentiert und (3) die Anwen-dung zum Reaktionsmonitoring und (4, 5) m{\"o}gliche Weiterentwicklungen gezeigt. Erfolgreich konnten mit dem selbst-entwickelten ESI IM-Spektrometer typische HPLC-Bedingungen wie Wassergehalte im Laufmittel von bis zu 90\%, Pufferkonzentrationen von bis zu 10 mM, sowie Nachweisgrenzen von bis zu 50 nM erreicht werden. Weiterhin wurde anhand der komplexen Trennungsg{\"a}nge (24 Pestizide/18 Aminos{\"a}uren) gezeigt, dass die HPLC und die IM-Spektrometrie eine hohe Orthogonalit{\"a}t besitzen. Eine effektive Peakkapazit{\"a}t von 240 wurde so realisiert. Auf der HPLC-S{\"a}ule koeluierende Substanzen konnten {\"u}ber die Driftzeit getrennt und {\"u}ber ihre IM identifi-ziert werden, sodass die Gesamttrennzeiten erheblich minimiert werden konnten. Die Anwend-barkeit des ESI IM-Spektrometers zur {\"U}berwachung chemischer Synthesen wurde anhand einer dreistufigen Reaktion demonstriert. Es konnten die wichtigsten Edukte, Zwischenprodukte und Produkte aller Stufen identifiziert werden. Eine quantitative Auswertung war sowohl {\"u}ber eine kurze HPLC-Vortrennung als auch durch die Entwicklung eines eigenen Kalibrierverfahrens, welches die Ladungskonkurrenz bei ESI ber{\"u}cksichtigt, ohne HPLC m{\"o}glich. Im zweiten Teil der Arbeit werden zwei Weiterentwicklungen des Spektrometers pr{\"a}sentiert. Eine M{\"o}glichkeit ist die Reduzierung des Drucks in den intermedi{\"a}ren Bereich (300 - 1000 mbar) mit dem Ziel der Verringerung der ben{\"o}tigten Spannungen. Mithilfe von Streulichtbildern und Strom-Spannungs-Kurven wurden f{\"u}r geringe Dr{\"u}cke eine verminderte Freisetzung der Analyt-Ionen aus den Tropfen festgestellt. Die Verluste konnten jedoch {\"u}ber h{\"o}here elektrische Feldst{\"a}rken ausgeglichen werden, sodass gleiche Nachweisgrenzen bei 500 mbar und bei 1 bar erreicht wurden. Die zweite Weiterentwicklung ist ein neuartiges Ionentors mit Pulsschaltung, welches eine Verdopplung der Aufl{\"o}sung auf bis zu R > 100 bei gleicher Sensitivit{\"a}t erm{\"o}glichte. Eine denkbare Anwendung im Bereich der Peptidanalytik wurde mit beachtlichen Aufl{\"o}sungen der Peptide von R = 90 gezeigt.}, language = {de} } @article{ZuehlkeRiebeBeitzetal.2015, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Zenichowski, Karl and Diener, Marc and Linscheid, Michael W.}, title = {An electrospray ionization-ion mobility spectrometer as detector for high-performance liquid chromatography}, series = {European journal of mass spectrometry}, volume = {21}, journal = {European journal of mass spectrometry}, number = {3}, publisher = {WeltTrends}, address = {Sussex}, issn = {1469-0667}, doi = {10.1255/ejms.1367}, pages = {391 -- 402}, year = {2015}, abstract = {The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 mu L min(-1) and 1500 mu L min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet-mode. The novel ESI-IM spectrometer tolerates high water contents (<= 90\%) and electrolyte concentrations up to 10 mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 mu M for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic IMs.}, language = {en} } @article{ZuehlkeSassRiebeetal.2017, author = {Z{\"u}hlke, Martin and Sass, Stephan and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Real-Time Reaction Monitoring of an Organic Multistep Reaction by Electrospray Ionization-Ion Mobility Spectrometry}, series = {ChemPlusChem}, volume = {82}, journal = {ChemPlusChem}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201700296}, pages = {1266 -- 1273}, year = {2017}, abstract = {The capability of electrospray ionization (ESI)-ion mobility (IM) spectrometry for reaction monitoring is assessed both as a stand-alone real-time technique and in combination with HPLC. A three-step chemical reaction, consisting of a Williamson ether synthesis followed by a hydrogenation and an N-alkylation step, is chosen for demonstration. Intermediates and products are determined with a drift time to mass-per-charge correlation. Addition of an HPLC column to the setup increases the separation power and allows the determination of further species. Monitoring of the intensities of the various species over the reaction time allows the detection of the end of reaction, determination of the rate-limiting step, observation of the system response in discontinuous processes, and optimization of the mass ratios of the starting materials. However, charge competition in ESI influences the quantitative detection of substances in the reaction mixture. Therefore, two different methods are investigated, which allow the quantification and investigation of reaction kinetics. The first method is based on the pre-separation of the compounds on an HPLC column and their subsequent individual detection in the ESI-IM spectrometer. The second method involves an extended calibration procedure, which considers charge competition effects and facilitates nearly real-time quantification.}, language = {en} }