@article{BenBekhtiWinkelRichteretal.2012, author = {Ben Bekhti, Nadya and Winkel, B. and Richter, P. and Kerp, J. and Klein, U. and Murphy, M. T.}, title = {An absorption-selected survey of neutral gas in the Milky Way halo New results based on a large sample of Ca II, Na I, and H I spectra towards QSOs}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {542}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {2}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201118673}, pages = {17}, year = {2012}, abstract = {Aims. We aim at analysing systematically the distribution and physical properties of neutral and mildly ionised gas in the Milky Way halo, based on a large absorption-selected data set. Methods. Multi-wavelength studies were performed combining optical absorption line data of Ca II and Na I with follow-up H I 21-cm emission line observations along 408 sight lines towards low-and high-redshift QSOs. We made use of archival optical spectra obtained with UVES/VLT. H I data were extracted from the Effelsberg-Bonn H I survey and the Galactic All-Sky survey. For selected sight lines we obtained deeper follow-up observations using the Effelsberg 100-m telescope. Results. Ca II (Na I) halo absorbers at intermediate and high radial velocities are present in 40-55\% (20-35\%) of the sightlines, depending on the column density threshold chosen. Many halo absorbers show multi-component absorption lines, indicating the presence of sub-structure. In 65\% of the cases, absorption is associated with H I 21-cm emission. The Ca II (Na I) column density distribution function follows a power-law with a slope of beta approximate to -2.2 (-1.4). Conclusions. Our absorption-selected survey confirms our previous results that the Milky Way halo is filled with a large number of neutral gas structures whose high column density tail represents the population of common H I high-and intermediate-velocity clouds seen in 21-cm observations. We find that Na I/Ca II column density ratios in the halo absorbers are typically smaller than those in the Milky Way disc, in the gas in the Magellanic Clouds, and in damped Lyman a systems. The small ratios (prominent in particular in high-velocity components) indicate a lower level of Ca depletion onto dust grains in Milky Way halo absorbers compared to gas in discs and inner regions of galaxies.}, language = {en} } @article{BoumaRichterFechner2019, author = {Bouma, Sietske Jeltje Deirdre and Richter, Philipp and Fechner, Cora}, title = {A population of high-velocity absorption-line systems residing in the Local Group}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935078}, pages = {12}, year = {2019}, abstract = {Aims. We investigated the ionisation conditions and distances of Galactic high-velocity clouds (HVCs) in the Galactic halo and beyond in the direction of the Local Group (LG) barycentre and anti-barycentre, by studying spectral data of 29 extragalactic background sources obtained with the Cosmic Origins Spectropgraph (COS) installed on the Hubble Space Telescope (HST). Methods. We model column-densities of low, intermediate, and high ions such as Si ii, C ii, Si iii, Si vi, and C iv, and use these data to construct a set of Cloudy ionisation models. Results. In total, we found 69 high-velocity absorption components along the 29 lines of sight. The components in the direction of the LG barycentre span the entire range of studied velocities, 100 less than or similar to vertical bar nu(LSR)vertical bar less than or similar to 400 km s(-1), while those in the anti-barycentre sample have velocities up to about 300 km s(-1). For 49 components, we infer the gas densities. In the direction of the LG barycentre, the gas densities exhibit a wide range from log nH = -3.96 to -2.55, while in the anti-barycentre direction the densities are systematically higher, log nH > -3.25. The barycentre absorbers can be split into two groups based on their density: a high-density group with log nH > -3.54, which can be affected by the Milky Way radiation field, and a low-density group (log nH <= -3.54). The latter has very low thermal pressures of P/k < 7.3 Kcm(-3). Conclusions. Our study shows that part of the absorbers in the LG barycentre direction trace gas at very low gas densities and thermal pressures. These properties indicate that the absorbers are located beyond the virial radius of the Milky Way. Our study also confirms results from earlier, single-sightline studies, suggesting the presence of a metal-enriched intragroup medium filling the LG near its barycentre.}, language = {en} } @article{FoxBargerWakkeretal.2018, author = {Fox, Andrew J. and Barger, Kathleen A. and Wakker, Bart P. and Richter, Philipp and Antwi-Danso, Jacqueline and Casetti-Dinescu, Dana I. and Howk, J. Christopher and Lehner, Nicolas and Crowther, Paul A. and Lockman, Felix J.}, title = {Chemical Abundances in the Leading Arm of the Magellanic Stream}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {854}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaa9bb}, pages = {14}, year = {2018}, abstract = {The Leading Arm (LA) of the Magellanic Stream is a vast debris field of H I clouds connecting the Milky Way and the Magellanic Clouds. It represents an example of active gas accretion onto the Galaxy. Previously, only one chemical abundance measurement had been made in the LA. Here we present chemical abundance measurements using Hubble Space Telescope/Cosmic Origins Spectrograph and Green Bank Telescope spectra of four AGN sightlines passing through the LA and three nearby sightlines that may trace outer fragments of the LA. We find low oxygen abundances, ranging from 4.0+(2.0)(2.0)\% 12.6(4.1)(6.0)\% solar, in the confirmed LA directions, with the lowest values found in the region known as LA III, farthest from the LMC. These abundances are substantially lower than the single previous measurement, S/H = 35 +/- 7\% solar, but are in agreement with those reported in the SMC filament of the trailing Stream, supporting a common origin in the SMC (not the LMC) for the majority of the LA and trailing Stream. This provides important constraints for models of the formation of the Magellanic System. Finally, two of the three nearby sightlines show high-velocity clouds with H I columns, kinematics, and oxygen abundances consistent with LA membership. This suggests that the LA is larger than traditionally thought, extending at least 20 degrees further to the Galactic northwest.}, language = {en} } @article{FoxRichterWakkeretal.2013, author = {Fox, Andrew J. and Richter, Philipp and Wakker, Bart P. and Lehner, Nicolas and Howk, J. Christopher and Ben Bekhti, Nadya and Bland-Hawthorn, Joss and Lucas, Stephen}, title = {The COS/UVES absorption survey of the magellanic stream - I. One-tenth solar abundances along the body of the stream}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {772}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/772/2/110}, pages = {16}, year = {2013}, abstract = {The Magellanic Stream (MS) is a massive and extended tail of multi-phase gas stripped out of the Magellanic Clouds and interacting with the Galactic halo. In this first paper of an ongoing program to study the Stream in absorption, we present a chemical abundance analysis based on HST/COS and VLT/UVES spectra of four active galactic nuclei (RBS 144, NGC 7714, PHL 2525, and HE 0056-3622) lying behind the MS. Two of these sightlines yield good MS metallicity measurements: toward RBS 144 we measure a low MS metallicity of [S/H] = [S II/H I] = -1.13 +/- 0.16 while toward NGC 7714 we measure [O/H] = [O I/H I] = -1.24 +/- 0.20. Taken together with the published MS metallicity toward NGC 7469, these measurements indicate a uniform abundance of approximate to 0.1 solar along the main body of the Stream. This provides strong support to a scenario in which most of the Stream was tidally stripped from the SMC approximate to 1.5-2.5 Gyr ago (a time at which the SMC had a metallicity of approximate to 0.1 solar), as predicted by several N-body simulations. However, in Paper II of this series, we report a much higher metallicity (S/H = 0.5 solar) in the inner Stream toward Fairall 9, a direction sampling a filament of the MS that Nidever et al. claim can be traced kinematically to the Large Magellanic Cloud, not the Small Magellanic Cloud. This shows that the bifurcation of the Stream is evident in its metal enrichment, as well as its spatial extent and kinematics. Finally we measure a similar low metallicity [O/H] = [O I/H I] = -1.03 +/- 0.18 in the v(LSR) = 150 km s(-1) cloud toward HE 0056-3622, which belongs to a population of anomalous velocity clouds near the south Galactic pole. This suggests these clouds are associated with the Stream or more distant structures (possibly the Sculptor Group, which lies in this direction at the same velocity), rather than tracing foreground Galactic material.}, language = {en} } @article{FoxWakkerBargeretal.2014, author = {Fox, Andrew J. and Wakker, Bart P. and Barger, Kathleen A. and Hernandez, Audra K. and Richter, Philipp and Lehner, Nicolas and Bland-Hawthorn, Joss and Charlton, Jane C. and Westmeier, Tobias and Thom, Christopher and Tumlinson, Jason and Misawa, Toru and Howk, J. Christopher and Haffner, L. Matthew and Ely, Justin and Rodriguez-Hidalgo, Paola and Kumari, Nimisha}, title = {The COS/UVES absorption survey of the magellanic stream. III. Ionization, total mass, and inflow rate onto the milky way}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {787}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/787/2/147}, pages = {31}, year = {2014}, abstract = {Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm emitting regions. We find that 81\% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is approximate to 11,000 deg(2), or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be approximate to 2.0 x 10(9) M-circle dot (d/55 kpc)(2), with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of similar to 0.5-1.0 Gyr, it will represent an average inflow rate of similar to 3.7-6.7 M-circle dot yr(-1), potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona.}, language = {en} } @article{HerenzRichterCharltonetal.2013, author = {Herenz, Peter and Richter, Philipp and Charlton, Jane C. and Masiero, Joseph R.}, title = {The milky way halo as a QSO absorption-line system new results from an HST/STIS absorption-line catalogue of galactic high-velocity clouds}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {550}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220531}, pages = {23}, year = {2013}, abstract = {We use archival UV absorption-line data from HST/STIS to statistically analyse the absorption characteristics of the high-velocity clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering fractions of low-and intermediate ions (Oi, Cii, Si ii, Mgii, Feii, Si iii, Civ, and Si iv) in the range f(c) = 0.20-0.70. For detailed analysis we concentrate on Si ii absorption components in HVCs, for which we investigate the distribution of column densities, b-values, and radial velocities. Combining information for Si ii and Mg II, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong Mg ii absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average similar to 52 percent to the total strong Mg ii cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong Mg ii absorption in the Milky Way halo and disc from an exterior vantage point is < f(c,sMgII)> = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong Mg ii absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong Mgii absorbers is < 34 percent. These findings are in line with the idea that outflowing gas (e. g., produced by galactic winds) in the halos of more actively star-forming galaxies dominate the absorption-cross section of strong Mgii absorbers in the local Universe.}, language = {en} } @article{LiuYanWangetal.2019, author = {Liu, Ruo-Yu and Yan, Huirong and Wang, Xiang-Yu and Shao, Shi and Li, Hui}, title = {Gamma-Ray production in the extended halo of the galaxy and possible implications for the origin of galactic cosmic rays}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {871}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaf567}, pages = {11}, year = {2019}, abstract = {Various studies have implied the existence of a gaseous halo around the Galaxy extending out to similar to 100 kpc. Galactic cosmic rays (CRs) that propagate to the halo, either by diffusion or by convection with the possibly existing large-scale Galactic wind, can interact with the gas therein and produce gamma-rays via proton-proton collision. We calculate the CR distribution in the halo and the gamma-ray flux, and explore the dependence of the result on model parameters such as diffusion coefficient, CR luminosity, and CR spectral index. We find that the current measurement of isotropic gamma-ray background (IGRB) at less than or similar to TeV with the Fermi Large Area Telescope already approaches a level that can provide interesting constraints on the properties of Galactic CR (e.g., with CR luminosity L-CR <= 1041 erg s(-1)). We also discuss the possibilities of the Fermi bubble and IceCube neutrinos originating from the proton-proton collision between CRs and gas in the halo, as well as the implication of our results for the baryon budget of the hot circumgalactic medium of our Galaxy. Given that the isotropic gamma-ray background is likely to be dominated by unresolved extragalactic sources, future telescopes may extract more individual sources from the IGRB, and hence put even more stringent restrictions on the relevant quantities (such as Galactic CR luminosity and baryon budget in the halo) in the presence of a turbulent halo that we consider.}, language = {en} } @article{NuzaParisiScannapiecoetal.2014, author = {Nuza, Sebastian E. and Parisi, Florencia and Scannapieco, Cecilia and Richter, Philipp and Gottloeber, Stefan and Steinmetz, Matthias}, title = {The distribution of gas in the Local Group from constrained cosmological simulations: the case for Andromeda and the Milky Way galaxies}, series = {Monthly notices of the Royal Astronomical Society}, volume = {441}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stu643}, pages = {2593 -- 2612}, year = {2014}, abstract = {We study the gas distribution in the Milky Way and Andromeda using a constrained cosmological simulation of the Local Group (LG) within the context of the CLUES (Constrained Local UniversE Simulations) project. We analyse the properties of gas in the simulated galaxies at z = 0 for three different phases: 'cold', 'hot' and H i, and compare our results with observations. The amount of material in the hot halo (M-hot a parts per thousand 4-5 x 10(10) M-aS (TM)), and the cold (M-cold(r a parts per thousand(2) 10 kpc) a parts per thousand 10(8) M-aS (TM)) and H i components displays reasonable agreement with observations. We also compute the accretion/ejection rates together with the H i (radial and all-sky) covering fractions. The integrated H i accretion rate within r = 50 kpc gives similar to 0.2-0.3 M-aS (TM) yr(-1), i.e. close to that obtained from high-velocity clouds in the Milky Way. We find that the global accretion rate is dominated by hot material, although ionized gas with T a parts per thousand(2) 10(5) K can contribute significantly too. The net accretion rates of all material at the virial radii are 6-8 M-aS (TM) yr(-1). At z = 0, we find a significant gas excess between the two galaxies, as compared to any other direction, resulting from the overlap of their gaseous haloes. In our simulation, the gas excess first occurs at z similar to 1, as a result of the kinematical evolution of the LG.}, language = {en} } @article{Richter2012, author = {Richter, Philipp}, title = {Cold gas accretion by high-velocity clouds and their connection to QSO Absorption-line systems}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {750}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/750/2/165}, pages = {11}, year = {2012}, abstract = {We combine H I 21 cm observations of the Milky Way, M31, and the local galaxy population with QSO absorption-line measurements to geometrically model the three-dimensional distribution of infalling neutral-gas clouds ("high-velocity clouds" (HVCs)) in the extended halos of low-redshift galaxies. We demonstrate that the observed distribution of HVCs around the Milky Way and M31 can be modeled by a radial exponential decline of the mean H I volume-filling factor in their halos. Our model suggests a characteristic radial extent of HVCs of R-halo similar to 50 kpc, a total H I mass in HVCs of similar to 10(8) M-circle dot, and a neutral-gas accretion rate of similar to 0.7 M-circle dot yr(-1) for M31/Milky-Way-type galaxies. Using a Holmberg-like luminosity scaling of the halo size of galaxies we estimate R-halo similar to 110 kpc for the most massive galaxies. The total absorption cross-section of HVCs at z approximate to 0 most likely is dominated by galaxies with total H I masses between 10(8.5) and 10(10) M-circle dot. Our model indicates that the H I disks of galaxies and their surrounding HVC population can account for 30\%-100\% of intervening QSO absorption-line systems with log N(H I) >= 17.5 at z approximate to 0. We estimate that the neutral-gas accretion rate density of galaxies at low redshift from infalling HVCs is dM(H) (I)/dt/dV approximate to 0.022 M-circle dot yr(-1) Mpc(-3), which is close to the measured star formation rate density in the local universe. HVCs thus may play an important role in the ongoing formation and evolution of galaxies.}, language = {en} } @article{RichterdeBoerWerneretal.2015, author = {Richter, Philipp and de Boer, Klaas S. and Werner, Klaus and Rauch, Thomas}, title = {High-velocity gas toward the LMC resides in the Milky Way halo}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {584}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527451}, pages = {4}, year = {2015}, abstract = {Aims. To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud, (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d = 9.2(-7.2)(+4.1) kpc distance. Methods. We study the velocity-component structure of low and intermediate metal ions (CII, SiII, SiIII) in the spectrum of RXJ0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer (FUSE) spectrum of the nearby LMC star Sk-69 59 and with Hi 21 cm data from the Leiden-Argentina-Bonn (LAB) survey. Results. Metal absorption toward RXJ0439.8-6809 is unambiguously detected in three different velocity components near v(LSR) = 0, + 60, and + 150 km s(-1). The presence of absorption proves that all three gas components are situated in front of the star, thus located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at v(LSR) = + 150 km s(-1), we derive an oxygen abundance of [O/H] = -0.63 (similar to 0.2 solar) from the neighboring Sk-69 59 sight line, in accordance with previous abundance measurements for this HVC. From the observed kinematics we infer that the HVC hardly participates in the Galactic rotation. Conclusions. Our study shows that the HVC toward the LMC represents a Milky Way halo cloud that traces low column density gas with relatively low metallicity. We rule out scenarios in which the HVC represents material close to the LMC that stems from a LMC outflow.}, language = {en} } @article{RichterFoxBenBekhtietal.2014, author = {Richter, Philipp and Fox, Andrew J. and Ben Bekhti, Nadya and Murphy, M. T. and Bomans, Dominik J. and Frank, S.}, title = {High-resolution absorption spectroscopy of the circumgalactic medium of the Milky Way}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312013}, pages = {92 -- 98}, year = {2014}, language = {en} } @article{RichterFoxWakkeretal.2018, author = {Richter, Philipp and Fox, Andrew J. and Wakker, Bart P. and Howk, J. Christopher and Lehner, Nicolas and Barger, Kathleen A. and Lockman, Felix J.}, title = {New constraints on the nature and origin of the leading arm of the magellanic stream}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {865}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aadd0f}, pages = {16}, year = {2018}, abstract = {We present a new precision measurement of gas-phase abundances of S, O, N, Si, Fe, P, Al, Ca as well as molecular hydrogen (H-2) in the Leading Arm (region II, LA II) of the Magellanic Stream (MS) toward the Seyfert galaxy NGC 3783. The results are based on high-quality archival ultraviolet/optical/radio data from various different instruments (HST/STIS, FUSE, AAT, GBT, GB140 ft, ATCA). Our study updates previous results from lower-resolution data and provides for the first time a self-consistent component model of the complex multiphase absorber, delivering important constraints on the nature and origin of LA II. We derive a uniform, moderate a abundance in the two main absorber groups at +245 and +190 km s(-1) of alpha/H = 0.30 +/- 0.05 solar, a low nitrogen abundance of N/H = 0.05 +/- 0.01 solar, and a high dust content with substantial dust depletion values for Si, Fe, Al, and Ca. These a, N, and dust abundances in LA II are similar to those observed in the Small Magellanic Cloud (SMC). From the analysis of the H2 absorption, we determine a high thermal pressure of P/k approximate to 1680 K cm(-3) in LA II, in line with the idea that LA II is located in the inner Milky Way halo at a z-height of < 20 kpc, where it hydrodynamically interacts with the ambient hot coronal gas. Our study supports a scenario in which LA II stems from the breakup of a metal- and dust-enriched progenitor cloud that was recently (200-500 Myr ago) stripped from the SMC.}, language = {en} } @article{RichterFoxWakkeretal.2013, author = {Richter, Philipp and Fox, Andrew J. and Wakker, Bart P. and Lehner, Nicolas and Howk, J. Christopher and Bland-Hawthorn, Joss and Ben Bekhti, Nadya and Fechner, Cora}, title = {The COS/UVES absorption survey of the magellanic stream - II. Evidence for a complex enrichment history of the stream from the fairall 9 sightline}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {772}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/772/2/111}, pages = {19}, year = {2013}, abstract = {We present a multi-wavelength study of the Magellanic Stream (MS), a massive gaseous structure in the Local Group that is believed to represent material stripped from the Magellanic Clouds. We use ultraviolet, optical and radio data obtained with HST/COS, VLT/UVES, FUSE, GASS, and ATCA to study metal abundances and physical conditions in the Stream toward the quasar Fairall 9. Line absorption in the MS from a large number of metal ions and from molecular hydrogen is detected in up to seven absorption components, indicating the presence of multi-phase gas. From the analysis of unsaturated S II absorption, in combination with a detailed photoionization model, we obtain a surprisingly high alpha abundance in the Stream toward Fairall 9 of [S/H] = -0.30 +/- 0.04 (0.50 solar). This value is five times higher than what is found along other MS sightlines based on similar COS/UVES data sets. In contrast, the measured nitrogen abundance is found to be substantially lower ([N/H] = -1.15 +/- 0.06), implying a very low [N/alpha] ratio of -0.85 dex. The substantial differences in the chemical composition of MS toward Fairall 9 compared to other sightlines point toward a complex enrichment history of the Stream. We favor a scenario, in which the gas toward Fairall 9 was locally enriched with a elements by massive stars and then was separated from the Magellanic Clouds before the delayed nitrogen enrichment from intermediate-mass stars could set in. Our results support (but do not require) the idea that there is a metal-enriched filament in the Stream toward Fairall 9 that originates in the LMC.}, language = {en} } @article{RichterNuzaFoxetal.2017, author = {Richter, Philipp and Nuza, S. E. and Fox, Andrew J. and Wakker, Bart P. and Lehner, N. and Ben Bekhti, Nadya and Fechner, Cora and Wendt, Martin and Howk, J. Christopher and Muzahid, S. and Ganguly, R. and Charlton, Jane C.}, title = {An HST/COS legacy survey of high-velocity ultraviolet absorption in the}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {607}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201630081}, pages = {90}, year = {2017}, abstract = {Context. The Milky Way is surrounded by large amounts of diffuse gaseous matter that connects the stellar body of our Galaxy with its large-scale Local Group (LG) environment. Aims. To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extragalactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Methods. Along 270 sightlines we measure metal absorption in the lines of Si II, Si III, C II, and C IV and associated H I 21 cm emission in HVCs in the velocity range vertical bar v(LSR)vertical bar = 100-500 km s(-1). With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the HVC absorption characteristics with that of damped Lyman alpha absorbers (DLAs) and constrained cosmological simulations of the LG (CLUES project).}, language = {en} } @article{StarkenburgMartinYouakimetal.2017, author = {Starkenburg, Else and Martin, Nicolas and Youakim, Kris and Aguado, David S. and Allende Prieto, Carlos and Arentsen, Anke and Bernard, Edouard J. and Bonifacio, Piercarlo and Caffau, Elisabetta and Carlberg, Raymond G. and Cote, Patrick and Fouesneau, Morgan and Francois, Patrick and Franke, Oliver and Gonzalez Hernandez, Jonay I. and Gwyn, Stephen D. J. and Hill, Vanessa and Ibata, Rodrigo A. and Jablonka, Pascale and Longeard, Nicolas and McConnachie, Alan W. and Navarro, Julio F. and Sanchez-Janssen, Ruben and Tolstoy, Eline and Venn, Kim A.}, title = {The Pristine survey - I. Mining the Galaxy for the most metal-poor stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1068}, pages = {2587 -- 2604}, year = {2017}, abstract = {We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H\&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg(2) in the Galactic halo ranging from b similar to 30 degrees to similar to 78 degrees and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of similar to 0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H](SEGUE) < -3.0 stars among [Fe/H](Pristine) < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.}, language = {en} } @article{WinkelBenBekhtiDarmstaedteretal.2011, author = {Winkel, B. and Ben Bekhti, Nadya and Darmstaedter, V. and Floeer, L. and Kerp, J. and Richter, Philipp}, title = {The high-velocity cloud complex Galactic center negative as seen by EBHIS and GASS I. Cloud catalog and global properties}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {533}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {18}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117357}, pages = {13}, year = {2011}, abstract = {Using Milky Way data of the new Effelsberg-Bonn HI Survey (EBHIS) and the Galactic All-Sky Survey (GASS), we present a revised picture of the high-velocity cloud (HVC) complex Galactic center negative (GCN). Owing to the higher angular resolution of these surveys compared to previous studies (e.g., the Leiden Dwingeloo Survey), we resolve complex GCN into lots of individual tiny clumps, that mostly have relatively broad line widths of more than 15 km s(-1). We do not detect a diffuse extended counterpart, which is unusual for an HVC complex. In total 243 clumps were identified and parameterized which allows us to statistically analyze the data. Cold-line components (i.e.,Delta upsilon(fwhm) < 7.5 km s(-1)) are found in about 5\% only of the identified cloudlets. Our analysis reveals that complex GCN is likely built up of several subpopulations that do not share a common origin. Furthermore, complex GCN might be a prime example for warm-gas accretion onto the Milky Way, where neutral HI clouds are not stable against interaction with the Milky Way gas halo and become ionized prior to accretion.}, language = {en} }