@article{DhahbiChaabeneChaouachietal.2022, author = {Dhahbi, Wissem and Chaabene, Helmi and Chaouachi, Anis and Padulo, Johnny and Behm, David G. and Cochrane, Jodie and Burnett, Angus and Chamari, Karim}, title = {Kinetic analysis of push-up exercises: a systematic review with practical recommendations}, series = {Sports biomechanics}, volume = {21}, journal = {Sports biomechanics}, number = {1}, publisher = {Routledge}, address = {Abingdon}, issn = {1476-3141}, doi = {10.1080/14763141.2018.1512149}, pages = {1 -- 40}, year = {2022}, abstract = {Push-ups represent one of the simplest and most popular strengthening exercise. The aim of this study was to systematically review and critically appraise the literature on the kinetics-related characteristics of different types of push-ups, with the objective of optimising training prescription and exercise-related load. A systematic search was conducted in the electronic databases PubMed, Google Scholar and Science Direct up to April 2018. Studies that reported kinetic data (e.g. initial and peak-force supported by the upper-limbs, impact-force, peak-flexion-moment of the elbow-joint, rate of propulsive- and impact-, and vertebral-joint compressive-forces) related to push-ups and included trained, recreational and untrained participants, were considered. The risk of bias in the included studies was assessed using the Critical Appraisal Skills Programme scale. From 5290 articles retrieved in the initial search, only 26 studies were included in this review. Kinetic data for 46 push-up variants were assessed. A limitation of the current review is that the relationship between our findings and actual clinical or practical consequences is not statistically proven but can only be inferred from our critical descriptive approach. Overall, this review provides detailed data on specific characteristics and intensities of push-up variations, in order to optimise exercise prescription for training and rehabilitation purposes.}, language = {en} } @article{PrieskeMuehlbauerKruegeretal.2015, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Kibele, A. and Behm, David George and Granacher, Urs}, title = {Sex-Specific effects of surface instability on drop jump and landing biomechanics}, series = {International journal of sports medicine}, volume = {36}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0034-1384549}, pages = {75 -- 81}, year = {2015}, abstract = {This study investigated sex-specific effects of surface instability on kinetics and lower extremity kinematics during drop jumping and landing. Ground reaction forces as well as knee valgus and flexion angles were tested in 14 males (age: 23 +/- 2 years) and 14 females (age: 24 +/- 3 years) when jumping and landing on stable and unstable surfaces. Jump height was found to be significantly lower (9 \%, p < 0.001) when drop jumps were performed on unstable vs. stable surface. Significantly higher peak ground reaction forces were observed when jumping was performed on unstable vs. stable surfaces (5 \%, p = 0.022). Regarding frontal plane kinematics during jumping and landing, knee valgus angles were higher on unstable compared to stable surfaces (1932 \%, p < 0.05). Additionally, at the onset of ground contact during landings, females showed higher knee valgus angles than males (222 \%, p = 0.027). Sagittal plane kinematics indicated significantly smaller knee flexion angles (6-35 \%, p < 0.05) when jumping and landing on unstable vs. stable surfaces. During drop jumps and landings, women showed smaller knee flexion angles at ground contact compared to men (27-33 \%, p < 0.05). These findings imply that knee motion strategies were modified by surface instability and sex during drop jumps and landings.}, language = {en} }