@misc{KehrPicchiDittmannThuenemann2011, author = {Kehr, Jan-Christoph and Picchi, Douglas Gatte and Dittmann-Th{\"u}nemann, Elke}, title = {Natural product biosyntheses in cyanobacteria a treasure trove of unique enzymes}, series = {Beilstein journal of organic chemistry}, volume = {7}, journal = {Beilstein journal of organic chemistry}, number = {2}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {1860-5397}, doi = {10.3762/bjoc.7.191}, pages = {1622 -- 1635}, year = {2011}, abstract = {Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future.}, language = {en} } @article{WeizIshidaQuittereretal.2014, author = {Weiz, Annika R. and Ishida, Keishi and Quitterer, Felix and Meyer, Sabine and Kehr, Jan-Christoph and Mueller, Kristian M. and Groll, Michael and Hertweck, Christian and Dittmann-Th{\"u}nemann, Elke}, title = {Harnessing the evolvability of tricyclic microviridins to dissect protease-inhibitor interactions}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {53}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201309721}, pages = {3735 -- 3738}, year = {2014}, abstract = {Understanding and controlling proteolysis is an important goal in therapeutic chemistry. Among the natural products specifically inhibiting proteases microviridins are particularly noteworthy. Microviridins are ribosomally produced and posttranslationally modified peptides that are processed into a unique, cagelike architecture. Here, we report a combined rational and random mutagenesis approach that provides fundamental insights into selectivity-conferring moieties of microviridins. The potent variant microviridin J was co-crystallized with trypsin, and for the first time the three-dimensional structure of microviridins was determined and the mode of inhibition revealed.}, language = {en} } @misc{KehrDittmannThuenemann2015, author = {Kehr, Jan-Christoph and Dittmann-Th{\"u}nemann, Elke}, title = {Biosynthesis and function of extracellular glycans in cyanobacteria}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400121}, pages = {17}, year = {2015}, abstract = {The cell surface of cyanobacteria is covered with glycans that confer versatility and adaptability to a multitude of environmental factors. The complex carbohydrates act as barriers against different types of stress and play a role in intra- as well as inter-species interactions. In this review, we summarize the current knowledge of the chemical composition, biosynthesis and biological function of exo- and lipo-polysaccharides from cyanobacteria and give an overview of sugar-binding lectins characterized from cyanobacteria. We discuss similarities with well-studied enterobacterial systems and highlight the unique features of cyanobacteria. We pay special attention to colony formation and EPS biosynthesis in the bloom-forming cyanobacterium, Microcystis aeruginosa.}, language = {en} } @article{MeyerMainzKehretal.2017, author = {Meyer, Sabine and Mainz, Andi and Kehr, Jan-Christoph and Suessmuth, Roderich and Dittmann, Elke}, title = {Prerequisites of Isopeptide Bond Formation in Microcystin Biosynthesis}, series = {ChemBioChem : a European journal of chemical biology}, volume = {18}, journal = {ChemBioChem : a European journal of chemical biology}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4227}, doi = {10.1002/cbic.201700389}, pages = {2376 -- 2379}, year = {2017}, abstract = {The biosynthesis of the potent cyanobacterial hepatotoxin microcystin involves isopeptide bond formation through the carboxylic acid side chains of d-glutamate and -methyl d-aspartate. Analysis of the in vitro activation profiles of the two corresponding adenylation domains, McyE-A and McyB-A(2), either in a didomain or a tridomain context with the cognate thiolation domain and the upstream condensation domain revealed that substrate activation of both domains strictly depended on the presence of the condensation domains. We further identified two key amino acids in the binding pockets of both adenylation domains that could serve as a bioinformatic signature of isopeptide bond-forming modules incorporating d-glutamate or d-aspartate. Our findings further contribute to the understanding of the multifaceted role of condensation domains in nonribosomal peptide synthetase assembly lines.}, language = {en} }