@article{ScheinerTotevaReimetal.2014, author = {Scheiner, Ricarda and Toteva, Anna and Reim, Tina and Sovik, Eirik and Barron, Andrew B.}, title = {Differences in the phototaxis of pollen and nectar foraging honey bees are related to their octopamine brain titers}, series = {Frontiers in physiology}, volume = {5}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2014.00116}, pages = {8}, year = {2014}, abstract = {The biogenic amine octopamine is an important neuromodulator, neurohormone and neurotransmitter in insects. We here investigate the role of octopamine signaling in honey bee phototaxis. Our results show that groups of bees differ naturally in their phototaxis. Pollen forgers display a lower light responsiveness than nectar foragers. The lower phototaxis of pollen foragers coincides with higher octopamine titers in the optic lobes but is independent of octopamine receptor gene expression. Increasing octopamine brain titers reduces responsiveness to light, while tyramine application enhances phototaxis. These findings suggest an involvement of octopamine signaling in honey bee phototaxis and possibly division of labor, which is hypothesized to be based on individual differences in sensory responsiveness.}, language = {en} } @misc{BlenauScheinerPlueckhahnetal.2002, author = {Blenau, Wolfgang and Scheiner, Ricarda and Pl{\"u}ckhahn, Stephanie and Oney, Bahar and Erber, Joachim}, title = {Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44308}, year = {2002}, abstract = {In the honey bee, responsiveness to sucrose correlates with many behavioural parameters such as age of first foraging, foraging role and learning. Sucrose responsiveness can be measured using the proboscis extension response (PER) by applying sucrose solutions of increasing concentrations to the antenna of a bee. We tested whether the biogenic amines octopamine, tyramine and dopamine, and the dopamine receptor agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene (6,7-ADTN) can modulate sucrose responsiveness. The compounds were either injected into the thorax or fed in sucrose solution to compare different methods of application. Injection and feeding of tyramine or octopamine significantly increased sucrose responsiveness. Dopamine decreased sucrose responsiveness when injected into the thorax. Feeding of dopamine had no effect. Injection of 6,7-ADTN into the thorax and feeding of 6,7-ADTN reduced sucrose responsiveness significantly. These data demonstrate that sucrose responsiveness in honey bees can be modulated by biogenic amines, which has far reaching consequences for other types of behaviour in this insect. (C) 2002 Elsevier Science B.V. All rights reserved.}, language = {en} }