@misc{MuellerNedielkovArndt2022, author = {M{\"u}ller, Marik and Nedielkov, Ruslan and Arndt, Katja M.}, title = {Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561621}, pages = {1 -- 18}, year = {2022}, abstract = {Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.}, language = {en} } @article{MuellerNedielkovArndt2022, author = {M{\"u}ller, Marik and Nedielkov, Ruslan and Arndt, Katja M.}, title = {Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol}, series = {Antibiotics}, volume = {11}, journal = {Antibiotics}, number = {4}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2079-6382}, doi = {10.3390/antibiotics11040443}, pages = {1 -- 18}, year = {2022}, abstract = {Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.}, language = {en} } @article{NeumannGoetzWrzoleketal.2018, author = {Neumann, Bettina and G{\"o}tz, Robert and Wrzolek, Pierre and Scheller, Frieder W. and Weidinger, Inez M. and Schwalbe, Matthias and Wollenberger, Ulla}, title = {Enhancement of the Electrocatalytic Activity of Thienyl-Substituted Iron Porphyrin Electropolymers by a Hangman Effect}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {10}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.201800934}, pages = {4353 -- 4361}, year = {2018}, abstract = {The thiophene-modified iron porphyrin FeT3ThP and the respective iron Hangman porphyrin FeH3ThP, incorporating a carboxylic acid hanging group in the second coordination sphere of the iron center, were electropolymerized on glassy carbon electrodes using 3,4-ethylenedioxythiophene (EDOT) as co-monomer. Scanning electron microscopy images and Resonance Raman spectra demonstrated incorporation of the porphyrin monomers into a fibrous polymer network. Porphyrin/polyEDOT films catalyzed the reduction of molecular oxygen in a four-electron reaction to water with onset potentials as high as +0.14V vs. Ag/AgCl in an aqueous solution of pH7. Further, FeT3ThP/polyEDOT films showed electrocatalytic activity towards reduction of hydrogen peroxide at highly positive potentials, which was significantly enhanced by introduction of the carboxylic acid hanging group in FeH3ThP. The second coordination sphere residue promotes formation of a highly oxidizing reaction intermediate, presumably via advantageous proton supply, as observed for peroxidases and catalases making FeH3ThP/polyEDOT films efficient mimics of heme enzymes.}, language = {en} } @article{LoewBogdanoffHerrmannetal.2006, author = {Loew, Noya and Bogdanoff, Peter and Herrmann, Iris and Wollenberger, Ursula and Scheller, Frieder W. and Katterle, Martin}, title = {Influence of modifications on the efficiency of pyrolysed CoTMPP as electrode material for horseradish peroxidase and the reduction of hydrogen peroxide}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {18}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.200603664}, pages = {2324 -- 2330}, year = {2006}, abstract = {A tailor-made horseradish peroxidase (HRP) bulk composite electrode was developed on the basis of pyrolyzed cobalt tetramethoxyphenylporphyrin (CoTMPP) by modifying pore size and surface area of the porous carbon material through varying amounts of iron oxalate and sulfur prior to pyrolyzation. The materials were used to immobilize horseradish peroxidase (HRP). These electrodes were characterized in terms of their efficiency to reduce hydrogen peroxide. The heterogeneous electron transfer rate constants of different materials were determined with the rotating disk electrode method and a k(S) (401 +/- 61 s(-1)) exceeding previously reported values for native HRP was found.}, language = {en} } @phdthesis{Laux2016, author = {Laux, Eva-Maria}, title = {Electric field-assisted immobilization and alignment of biomolecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90271}, school = {Universit{\"a}t Potsdam}, pages = {IX, 120}, year = {2016}, abstract = {In this dissertation, an electric field-assisted method was developed and applied to achieve immobilization and alignment of biomolecules on metal electrodes in a simple one-step experiment. Neither modifications of the biomolecule nor of the electrodes were needed. The two major electrokinetic effects that lead to molecule motion in the chosen electrode configurations used were identified as dielectrophoresis and AC electroosmotic flow. To minimize AC electroosmotic flow, a new 3D electrode configuration was designed. Thus, the influence of experimental parameters on the dielectrophoretic force and the associated molecule movement could be studied. Permanent immobilization of proteins was examined and quantified absolutely using an atomic force microscope. By measuring the volumes of the immobilized protein deposits, a maximal number of proteins contained therein was calculated. This was possible since the proteins adhered to the tungsten electrodes even after switching off the electric field. The permanent immobilization of functional proteins on surfaces or electrodes is one crucial prerequisite for the fabrication of biosensors. Furthermore, the biofunctionality of the proteins must be retained after immobilization. Due to the chemical or physical modifications on the proteins caused by immobilization, their biofunctionality is sometimes hampered. The activity of dielectrophoretically immobilized proteins, however, was proven here for an enzyme for the first time. The enzyme horseradish peroxidase was used exemplarily, and its activity was demonstrated with the oxidation of dihydrorhodamine 123, a non-fluorescent precursor of the fluorescence dye rhodamine 123. Molecular alignment and immobilization - reversible and permanent - was achieved under the influence of inhomogeneous AC electric fields. For orientational investigations, a fluorescence microscope setup, a reliable experimental procedure and an evaluation protocol were developed and validated using self-made control samples of aligned acridine orange molecules in a liquid crystal. Lambda-DNA strands were stretched and aligned temporarily between adjacent interdigitated electrodes, and the orientation of PicoGreen molecules, which intercalate into the DNA strands, was determined. Similarly, the aligned immobilization of enhanced Green Fluorescent Protein was demonstrated exploiting the protein's fluorescence and structural properties. For this protein, the angle of the chromophore with respect to the protein's geometrical axis was determined in good agreement with X-ray crystallographic data. Permanent immobilization with simultaneous alignment of the proteins was achieved along the edges, tips and on the surface of interdigitated electrodes. This was the first demonstration of aligned immobilization of proteins by electric fields. Thus, the presented electric field-assisted immobilization method is promising with regard to enhanced antibody binding capacities and enzymatic activities, which is a requirement for industrial biosensor production, as well as for general interaction studies of proteins.}, language = {en} } @phdthesis{Steffen2005, author = {Steffen, Jenny}, title = {Transkription von Markergenen an immbolisierten Nukleins{\"a}uren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10282}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Die Etablierung der Transkription von kompletten Genen auf planaren Oberfl{\"a}chen soll eine Verbindung zwischen der Mikroarraytechnologie und der Transkriptomforschung herstellen. Dar{\"u}ber hinaus kann mit diesem Verfahren ein Br{\"u}ckenschlag zwischen der Synthese der Gene und ihrer kodierenden Proteine auf einer Oberfl{\"a}che erfolgen. Alle transkribierten RNAs wurden mittels RT-PCR in cDNA umgeschrieben und in einer genspezifischen PCR amplifiziert. Die PCR-Produkte wurden hierf{\"u}r entweder per Hand oder maschinell auf die Oberfl{\"a}che transferiert. {\"U}ber eine Oberfl{\"a}chen-PCR war es m{\"o}glich, die Gensequenz des Reportergens EGFP direkt auf der Oberfl{\"a}che zu synthetisieren und anschließend zu transkribieren. Somit war eine Transkription mit weniger als 1 ng an Matrize m{\"o}glich. Der Vorteil einer Oberfl{\"a}chen-Transkription gegen{\"u}ber der in L{\"o}sung liegt in der mehrfachen Verwendung der immobilisierten Matrize, wie sie in dieser Arbeit dreimal erfolgreich absolviert wurde. Die Oberfl{\"a}chen-Translation des EGFP-Gens konnte ebenfalls zweimal an einer immobilisierten Matrize gezeigt werden, wobei Zweifel {\"u}ber eine echte Festphasen-Translation nicht ausger{\"a}umt werden konnten. Zusammenfassend kann festgestellt werden, dass die Transkription und Translation von immobilisierten Gensequenzen auf planaren Oberfl{\"a}chen m{\"o}glich ist, wof{\"u}r die linearen Matrizen direkt auf der Oberfl{\"a}che synthetisiert werden k{\"o}nnen.}, subject = {Immobilisierung}, language = {de} }