@phdthesis{Schaarschmidt2021, author = {Schaarschmidt, Stephanie}, title = {Evaluation and application of omics approaches to characterize molecular responses to abiotic stresses in plants}, doi = {10.25932/publishup-50963}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509630}, school = {Universit{\"a}t Potsdam}, pages = {viii, 117}, year = {2021}, abstract = {Aufgrund des globalen Klimawandels ist die Gew{\"a}hrleistung der Ern{\"a}hrungssicherheit f{\"u}r eine wachsende Weltbev{\"o}lkerung eine große Herausforderung. Insbesondere abiotische Stressoren wirken sich negativ auf Ernteertr{\"a}ge aus. Um klimaangepasste Nutzpflanzen zu entwickeln, ist ein umfassendes Verst{\"a}ndnis molekularer Ver{\"a}nderungen in der Reaktion auf unterschiedlich starke Umweltbelastungen erforderlich. Hochdurchsatz- oder "Omics"-Technologien k{\"o}nnen dazu beitragen, Schl{\"u}sselregulatoren und Wege abiotischer Stressreaktionen zu identifizieren. Zus{\"a}tzlich zur Gewinnung von Omics-Daten m{\"u}ssen auch Programme und statistische Analysen entwickelt und evaluiert werden, um zuverl{\"a}ssige biologische Ergebnisse zu erhalten. Ich habe diese Problemstellung in drei verschiedenen Studien behandelt und daf{\"u}r zwei Omics-Technologien benutzt. In der ersten Studie wurden Transkript-Daten von den beiden polymorphen Arabidopsis thaliana Akzessionen Col-0 und N14 verwendet, um sieben Programme hinsichtlich ihrer F{\"a}higkeit zur Positionierung und Quantifizierung von Illumina RNA Sequenz-Fragmenten („Reads") zu evaluieren. Zwischen 92\% und 99\% der Reads konnten an die Referenzsequenz positioniert werden und die ermittelten Verteilungen waren hoch korreliert f{\"u}r alle Programme. Bei der Durchf{\"u}hrung einer differentiellen Genexpressionsanalyse zwischen Pflanzen, die bei 20 °C oder 4 °C (K{\"a}lteakklimatisierung) exponiert wurden, ergab sich eine große paarweise {\"U}berlappung zwischen den Programmen. In der zweiten Studie habe ich die Transkriptome von zehn verschiedenen Oryza sativa (Reis) Kultivaren sequenziert. Daf{\"u}r wurde die PacBio Isoform Sequenzierungstechnologie benutzt. Die de novo Referenztranskriptome hatten zwischen 38.900 bis 54.500 hoch qualitative Isoformen pro Sorte. Die Isoformen wurden kollabiert, um die Sequenzredundanz zu verringern und danach evaluiert z.B. hinsichtlich des Vollst{\"a}ndigkeitsgrades (BUSCO), der Transkriptl{\"a}nge und der Anzahl einzigartiger Transkripte pro Genloci. F{\"u}r die hitze- und trockenheitstolerante Sorte N22 wurden ca. 650 einzigartige und neue Transkripte identifiziert, von denen 56 signifikant unterschiedlich in sich entwickelnden Samen unter kombiniertem Trocken- und Hitzestress exprimiert wurden. In der letzten Studie habe ich die Ver{\"a}nderungen in Metabolitprofilen von acht Reissorten gemessen und analysiert, die dem Stress hoher Nachttemperaturen (HNT) ausgesetzt waren und w{\"a}hrend der Trocken- und Regenzeit im Feld auf den Philippinen angebaut wurden. Es wurden jahreszeitlich bedingte Ver{\"a}nderungen im Metabolitspiegel sowie f{\"u}r agronomische Parameter identifiziert und m{\"o}gliche Stoffwechselwege, die einen Ertragsr{\"u}ckgang unter HNT-Bedingungen verursachen, vorgeschlagen. Zusammenfassend konnte ich zeigen, dass der Vergleich der RNA-seq Programme den Pflanzenwissenschaftler*innen helfen kann, sich f{\"u}r das richtige Werkzeug f{\"u}r ihre Daten zu entscheiden. Die de novo Transkriptom-Rekonstruktion von Reissorten ohne Genomsequenz bietet einen gezielten, kosteneffizienten Ansatz zur Identifizierung neuer Gene, die durch verschiedene Stressbedingungen reguliert werden unabh{\"a}ngig vom Organismus. Mit dem Metabolomik-Ansatz f{\"u}r HNT-Stress in Reis habe ich stress- und jahreszeitenspezifische Metabolite identifiziert, die in Zukunft als molekulare Marker f{\"u}r die Verbesserung von Nutzpflanzen verwendet werden k{\"o}nnten.}, language = {en} } @phdthesis{Schwahn2018, author = {Schwahn, Kevin}, title = {Data driven approaches to infer the regulatory mechanism shaping and constraining levels of metabolites in metabolic networks}, doi = {10.25932/publishup-42324}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423240}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2018}, abstract = {Systems biology aims at investigating biological systems in its entirety by gathering and analyzing large-scale data sets about the underlying components. Computational systems biology approaches use these large-scale data sets to create models at different scales and cellular levels. In addition, it is concerned with generating and testing hypotheses about biological processes. However, such approaches are inevitably leading to computational challenges due to the high dimensionality of the data and the differences in the dimension of data from different cellular layers. This thesis focuses on the investigation and development of computational approaches to analyze metabolite profiles in the context of cellular networks. This leads to determining what aspects of the network functionality are reflected in the metabolite levels. With these methods at hand, this thesis aims to answer three questions: (1) how observability of biological systems is manifested in metabolite profiles and if it can be used for phenotypical comparisons; (2) how to identify couplings of reaction rates from metabolic profiles alone; and (3) which regulatory mechanism that affect metabolite levels can be distinguished by integrating transcriptomics and metabolomics read-outs. I showed that sensor metabolites, identified by an approach from observability theory, are more correlated to each other than non-sensors. The greater correlations between sensor metabolites were detected both with publicly available metabolite profiles and synthetic data simulated from a medium-scale kinetic model. I demonstrated through robustness analysis that correlation was due to the position of the sensor metabolites in the network and persisted irrespectively of the experimental conditions. Sensor metabolites are therefore potential candidates for phenotypical comparisons between conditions through targeted metabolic analysis. Furthermore, I demonstrated that the coupling of metabolic reaction rates can be investigated from a purely data-driven perspective, assuming that metabolic reactions can be described by mass action kinetics. Employing metabolite profiles from domesticated and wild wheat and tomato species, I showed that the process of domestication is associated with a loss of regulatory control on the level of reaction rate coupling. I also found that the same metabolic pathways in Arabidopsis thaliana and Escherichia coli exhibit differences in the number of reaction rate couplings. I designed a novel method for the identification and categorization of transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approach determines the partial correlation of metabolites with control by the principal components of the transcript levels. The principle components contain the majority of the transcriptomic information allowing to partial out the effect of the transcriptional layer from the metabolite profiles. Depending whether the correlation between metabolites persists upon controlling for the effect of the transcriptional layer, the approach allows us to group metabolite pairs into being associated due to post-transcriptional or transcriptional regulation, respectively. I showed that the classification of metabolite pairs into those that are associated due to transcriptional or post-transcriptional regulation are in agreement with existing literature and findings from a Bayesian inference approach. The approaches developed, implemented, and investigated in this thesis open novel ways to jointly study metabolomics and transcriptomics data as well as to place metabolic profiles in the network context. The results from these approaches have the potential to provide further insights into the regulatory machinery in a biological system.}, language = {en} }