@phdthesis{Schirmer2019, author = {Schirmer, Annika}, title = {Consistent individual differences in movement-related behaviour as equalising and/or stabilising mechanisms for species coexistence}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2019}, abstract = {The facilitation of species coexistence has been a central theme in ecological research for years, highlighting two key aspects: ecological niches and competition between species. According to the competitive exclusion principle, the overlap of species niches predicts the amount of shared resources and therefore competition between species, determining their ability to coexist. Only if niches of two species are sufficiently different, thus niche overlap is low, competition within species is higher than competition between species and stable coexistence is possible. Thereby, differences in species mean traits are focused on and conspecific individuals are assumed to be interchangeable. This approach might be outdated since behaviour, as a key aspect mediating niche differentiation between species, is individual based. Individuals from one species consistently differ across time and situations in their behavioural traits. Causes and consequences of consistent behavioural differences have been thoroughly investigated stimulating their recent incorporation into ecological interactions and niche theory. Spatial components have so far been largely overlooked, although animal movement is strongly connected to several aspects of ecological niches and interactions between individuals. Furthermore, numerous movement aspects haven been proven to be crucially influenced by consistent individual differences. Considering spatial parameters could therefore crucially broaden our understanding of how individual niches are formed and ecological interactions are shaped. Furthermore, extending established concepts on species interactions by an individual component could provide new insights into how species coexistence is facilitated and local biodiversity is maintained. The main aim of this thesis was to test whether consistent inter-individual differences can facilitate the coexistence of ecological similar species. Therefore, the effects of consistent inter-individual differences on the spatial behaviour of two rodent species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius), were investigated and put in the context of: (i) individual spatial niches, (ii) interactions between species, and (iii) the importance of different levels of behavioural variation within species for their interactions. Consistent differences of study animals in boldness and exploration were quantified with the same tests in all presented studies and always combined with observations of movement and space use via automated VHF radio telemetry. Consequently, results are comparable throughout the thesis and the methods provide a common denominator for all chapters. The first two chapters are based on observations of free-ranging rodents in natural populations, while chapter III represents an experimental approach under semi-natural conditions. Chapter I focusses on the effect of consistent differences in boldness and exploration on movement and space use of bank voles and their contribution to individual spatial niche separation. Results show boldness to be the dominating predictor for spatial parameters in bank voles. Irrespective of sex, bolder individuals had larger home ranges, moved longer distances, had less spatial interactions with conspecifics and occupied different microhabitats compared to shy individuals. The same boldness-dependent spatial patterns could be observed in striped field mice which is reported in chapter II. Therefore, both study species showed individual spatial niche occupation. Chapter II builds on findings from the first chapter, investigating the effect of boldness driven individual spatial niche occupation on the interactions between species. Irrespective of species and sex, bolder individuals had more interspecific spatial interactions, but less intraspecific interactions, compared to shy individuals. Due to individual niches occupation the competitive environment individuals experience is not random. Interactions are restricted to individuals of similar behavioural type with presumably similar competitive ability, which could balance differences on the species level and support coexistence. In chapter III the experimental populations were either comprised of only shy or only bold bank voles, while striped field mice varied, creating either a shy- or bold-biased competitive community. Irrespective of behavioural type, striped field mice had more intraspecific interactions in bold-biased competitive communities. Only in a shy-biased competitive community, bolder striped field mice had less interspecific interactions compared to shy individuals. Bank voles showed no difference in intra- or interspecific interactions between populations. Chapter III highlights, that not only consistent inter-individual differences per se are important for interactions within and between species, but also the amount of behavioural variation within coexisting species. Overall, this thesis highlights the importance of considering consistent inter-individual differences in a spatial context and their connection to individual spatial niche occupation, as well as the resulting effects on interactions within and between species. Individual differences are discussed in the context of similarity of individuals, individual and species niche width, and individual and species niche overlap. Thereby, this thesis makes one step further from the existing research on individual niches towards integrating consistent inter-individual differences into the larger framework of species coexistence.}, language = {en} } @article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the dark side}, series = {Frontiers in ecology and evolution}, volume = {9}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the Dark Side}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} }