@article{HermanussenScheffler2016, author = {Hermanussen, Michael and Scheffler, Christiane}, title = {Stature signals status: The association of stature, status and perceived dominance - a thought experiment}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\~A}¼r Anthropologie}, volume = {73}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\~A}¼r Anthropologie}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2016/0698}, pages = {265 -- 274}, year = {2016}, abstract = {Background: There is a common perception that tall stature results in social dominance. Evidence in meerkats suggests that social dominance itself may be a strong stimulus for growth. Relative size serves as the signal for individuals to induce strategic growth adjustments. Aim: We construct a thought experiment to explore the potential consequences of the question: is stature a social signal also in humans? We hypothesize that (1) upward trends in height in the lower social strata are perceived as social challenges yielding similar though attenuated upward trends in the dominant strata, and that (2) democratization, but also periods of political turmoil that facilitate upward mobility of the lower strata, are accompanied by upward trends in height. Material and methods: We reanalyzed large sets of height data of European conscripts born between 1856-1860 and 1976-1980; and annual data of German military conscripts, born between 1965 and 1985, with information on height and school education. Results: Taller stature is associated with higher socioeconomic status. Historic populations show larger height differences between social strata that tend to diminish in the more recent populations. German height data suggest that both democratization, and periods of political turmoil facilitating upward mobility of the lower social strata are accompanied by a general upward height spiral that captures the whole population. Discussion: We consider stature as a signal. Nutrition, health, general living conditions and care giving are essential prerequisites for growth, yet not to maximize stature, but to allow for its function as a lifelong social signal. Considering stature as a social signal provides an elegant explanation of the rapid height adjustments observed in migrants, of the hitherto unexplained clustering of body height in modern and historic cohorts of military conscripts, and of the parallelism between changes in political conditions, and secular trends in adult human height since the 19th century.}, language = {en} } @article{BoginHermanussenScheffler2018, author = {Bogin, Barry and Hermanussen, Michael and Scheffler, Christiane}, title = {As tall as my peers}, series = {Journal of biological and clinical anthropology}, volume = {74}, journal = {Journal of biological and clinical anthropology}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0828}, pages = {365 -- 376}, year = {2018}, abstract = {Background: We define migrants as people who move from their place of birth to a new place of residence. Migration usually is directed by "Push-Pull" factors, for example to escape from poor living conditions or to find more prosperous socio-economic conditions. Migrant children tend to assimilate quickly, and soon perceive themselves as peers within their new social networks. Differences exist between growth of first generation and second generation migrants. Methods: We review body heights and height distributions of historic and modern migrant populations to test two hypotheses: 1) that migrant and adopted children coming from lower social status localities to higher status localities adjust their height growth toward the mean of the dominant recipient social network, and 2) social dominant colonial and military migrants display growth that significantly surpasses the median height of both the conquered population and the population of origin. Our analytical framework also considered social networks. Recent publications indicate that spatial connectedness (community effects) and social competitiveness can affect human growth. Results: Migrant children and adolescents of lower social status rapidly adjust in height towards average height of their hosts, but tend to mature earlier, and are prone to overweight. The mean height of colonial/military migrants does surpass that of the conquered and origin population. Conclusion: Observations on human social networks, non-human animal strategic growth adjustments, and competitive growth processes strengthen the concept of social connectedness being involved in the regulation of human migrant growth.}, language = {en} } @misc{HermanussenSchefflerGrothetal.2018, author = {Hermanussen, Michael and Scheffler, Christiane and Groth, Detlef and Bogin, Barry}, title = {Perceiving stunting - Student research and the "Lieschen Muller effect" in nutrition science}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {74}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0858}, pages = {355 -- 358}, year = {2018}, language = {en} } @article{LebedevaGrothHermanussenetal.2019, author = {Lebedeva, Lidia and Groth, Detlef and Hermanussen, Michael and Scheffler, Christiane and Godina, Elena}, title = {The network effects on conscripts' height in the central provinces of Russian empire in the middle of XIX century}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {76}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2019/0984}, pages = {371 -- 377}, year = {2019}, abstract = {Background: We investigated average body height in the central provinces of the Russian empire in the middle of XIX century in view of the concept of "community effects on height". We analyzed body height correlations between neighboring districts at this time. We added information about secular changes in body height during the 19th century of this territory. Material and methods: The study used height data of conscripts, which were born in the years 1853-1863, and age 21 at the time of measurement. The territory of seven provinces was considered as a network with 105 nodes, each node representing one district with information on average male body height. In order to define neighboring districts three different approaches were used: based on the "common borders" method, based on Euclidean distances (from 60 to 120 km), based on real road connections. Results: Small but significant correlation coefficients were observed between 1st order districts in the network based on Euclidean distance of 100 km (r = 0.256, p-value = 0.006) and based on "the common borders" approach (r = 0.25, p-value = 0.02). Wherein no significant correlations were observed in the network based on road connections and between second order neighbors regardless of the method. Conclusion: Height correlation coefficients between 1st order neighboring districts observed in the Russian districts were very similar to values observed in the Polish study (r = 0.24). The considered Russian territory and the territory of Poland have a lot in common. They consist of both plains without mountains. In contradistinction to Poland the transport infrastructure in Russia was weakly developed in the middle of XIX century. In addition, the mobility of people was limited by serfdom. In this context the absent of significant correlation of second order neighbors can be explained by low population density and lack of migration and communication between the districts.}, language = {en} }