@misc{WoodhouseMakowerYeungetal.2016, author = {Woodhouse, Jason Nicholas and Makower, A. Katharina and Yeung, Anna C. Y. and Ongley, Sarah E. and Micallef, Melinda L. and Moffitt, Michelle C. and Neilan, Brett A.}, title = {Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria}, series = {Environmental microbiology reports}, volume = {8}, journal = {Environmental microbiology reports}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1758-2229}, doi = {10.1111/1758-2229.12366}, pages = {3 -- 13}, year = {2016}, abstract = {A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist.}, language = {en} } @misc{RajasundaramSelbig2016, author = {Rajasundaram, Dhivyaa and Selbig, Joachim}, title = {analysis}, series = {Current opinion in plant biology}, volume = {30}, journal = {Current opinion in plant biology}, publisher = {Elsevier}, address = {London}, issn = {1369-5266}, doi = {10.1016/j.pbi.2015.12.010}, pages = {57 -- 61}, year = {2016}, abstract = {The development of 'omics' technologies has progressed to address complex biological questions that underlie various plant functions thereby producing copious amounts of data. The need to assimilate large amounts of data into biologically meaningful interpretations has necessitated the development of statistical methods to integrate multidimensional information. Throughout this review, we provide examples of recent outcomes of 'omics' data integration together with an overview of available statistical methods and tools.}, language = {en} } @misc{GrossartRojasJimenez2016, author = {Großart, Hans-Peter and Rojas-Jimenez, Keilor}, title = {Aquatic fungi: targeting the forgotten in microbial ecology}, series = {Current opinion in microbiology}, volume = {31}, journal = {Current opinion in microbiology}, publisher = {Elsevier}, address = {London}, issn = {1369-5274}, doi = {10.1016/j.mib.2016.03.016}, pages = {140 -- 145}, year = {2016}, abstract = {Fungi constitute important and conspicuous components of aquatic microbial communities, but their diversity and functional roles remain poorly characterized. New methods and conceptual frameworks are required to accurately describe their ecological roles, involvement in global cycling processes, and utility for human activities, considering both cultivation independent techniques as well as experiments in laboratory and in natural ecosystems. Here we highlight recent developments and extant knowledge gaps in aquatic mycology, and provide a conceptual model to expose the importance of fungi in aquatic food webs and related biogeochemical processes.}, language = {en} } @misc{MarceGeorgeBuscarinuetal.2016, author = {Marce, Rafael and George, Glen and Buscarinu, Paola and Deidda, Melania and Dunalska, Julita and de Eyto, Elvira and Flaim, Giovanna and Grossart, Hans-Peter and Istvanovics, Vera and Lenhardt, Mirjana and Moreno-Ostos, Enrique and Obrador, Biel and Ostrovsky, Ilia and Pierson, Donald C. and Potuzak, Jan and Poikane, Sandra and Rinke, Karsten and Rodriguez-Mozaz, Sara and Staehr, Peter A. and Sumberova, Katerina and Waajen, Guido and Weyhenmeyer, Gesa A. and Weathers, Kathleen C. and Zion, Mark and Ibelings, Bas W. and Jennings, Eleanor}, title = {Automatic High Frequency Monitoring for Improved Lake and Reservoir Management}, series = {Frontiers in plant science}, volume = {50}, journal = {Frontiers in plant science}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/acs.est.6b01604}, pages = {10780 -- 10794}, year = {2016}, abstract = {Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied, by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.}, language = {en} } @misc{LeimkuehlerIobbiNivol2016, author = {Leimk{\"u}hler, Silke and Iobbi-Nivol, Chantal}, title = {Bacterial molybdoenzymes: old enzymes for new purposes}, series = {FEMS microbiology reviews}, volume = {40}, journal = {FEMS microbiology reviews}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0168-6445}, doi = {10.1093/femsre/fuv043}, pages = {1 -- 18}, year = {2016}, abstract = {Molybdoenzymes are widespread in eukaryotic and prokaryotic organisms where they play crucial functions in detoxification reactions in the metabolism of humans and bacteria, in nitrate assimilation in plants and in anaerobic respiration in bacteria. To be fully active, these enzymes require complex molybdenum-containing cofactors, which are inserted into the apoenzymes after folding. For almost all the bacterial molybdoenzymes, molybdenum cofactor insertion requires the involvement of specific chaperones. In this review, an overview on the molybdenum cofactor biosynthetic pathway is given together with the role of specific chaperones dedicated for molybdenum cofactor insertion and maturation. Many bacteria are involved in geochemical cycles on earth and therefore have an environmental impact. The roles of molybdoenzymes in bioremediation and for environmental applications are presented.This review gives an overview of the diverse mechanisms leading to the insertion of the different forms of the molybdenum cofactor into the respective target enzymes and summarizes the roles of different molybdoenzymes in the environment.This review gives an overview of the diverse mechanisms leading to the insertion of the different forms of the molybdenum cofactor into the respective target enzymes and summarizes the roles of different molybdoenzymes in the environment.}, language = {en} } @misc{SpellervandenHurkCharpentieretal.2016, author = {Speller, Camilla and van den Hurk, Youri and Charpentier, Anne and Rodrigues, Ana and Gardeisen, Armelle and Wilkens, Barbara and McGrath, Krista and Rowsell, Keri and Spindler, Luke and Collins, Matthew J. and Hofreiter, Michael}, title = {Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {371}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2015.0332}, pages = {11}, year = {2016}, language = {en} } @misc{deVinuesaAbdelilahSeyfriedKnausetal.2016, author = {de Vinuesa, Amaya Garcia and Abdelilah-Seyfried, Salim and Knaus, Petra and Zwijsen, An and Bailly, Sabine}, title = {BMP signaling in vascular biology and dysfunction}, series = {New journal of physics : the open-access journal for physics}, volume = {27}, journal = {New journal of physics : the open-access journal for physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1359-6101}, doi = {10.1016/j.cytogfr.2015.12.005}, pages = {65 -- 79}, year = {2016}, abstract = {The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{SperfeldRaubenheimerWacker2016, author = {Sperfeld, Erik and Raubenheimer, David and Wacker, Alexander}, title = {Bridging factorial and gradient concepts of resource co-limitation: towards a general framework applied to consumers}, series = {Ecology letters}, volume = {19}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12554}, pages = {201 -- 215}, year = {2016}, abstract = {Organism growth can be limited either by a single resource or by multiple resources simultaneously (co-limitation). Efforts to characterise co-limitation have generated two influential approaches. One approach uses limitation scenarios of factorial growth assays to distinguish specific types of co-limitation; the other uses growth responses spanned over a continuous, multi-dimensional resource space to characterise different types of response surfaces. Both approaches have been useful in investigating particular aspects of co-limitation, but a synthesis is needed to stimulate development of this recent research area. We address this gap by integrating the two approaches, thereby presenting a more general framework of co-limitation. We found that various factorial (co-)limitation scenarios can emerge in different response surface types based on continuous availabilities of essential or substitutable resources. We tested our conceptual co-limitation framework on data sets of published and unpublished studies examining the limitation of two herbivorous consumers in a two-dimensional resource space. The experimental data corroborate the predictions, suggesting a general applicability of our co-limitation framework to generalist consumers and potentially also to other organisms. The presented framework might give insight into mechanisms that underlie co-limitation responses and thus can be a seminal starting point for evaluating co-limitation patterns in experiments and nature.}, language = {en} } @misc{RevereyGrossartPremkeetal.2016, author = {Reverey, Florian and Großart, Hans-Peter and Premke, Katrin and Lischeid, Gunnar}, title = {Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {775}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-016-2715-9}, pages = {1 -- 20}, year = {2016}, abstract = {Kettle holes as a specific group of isolated, small lentic freshwater systems (LFS) often are (i) hot spots of biogeochemical cycling and (ii) exposed to frequent sediment desiccation and rewetting. Their ecological functioning is greatly determined by immanent carbon and nutrient transformations. The objective of this review is to elucidate effects of a changing hydrological regime (i.e., dry-wet cycles) on carbon and nutrient cycling in kettle hole sediments. Generally, dry-wet cycles have the potential to increase C and N losses as well as P availability. However, their duration and frequency are important controlling factors regarding direction and intensity of biogeochemical and microbiological responses. To evaluate drought impacts on sediment carbon and nutrient cycling in detail requires the context of the LFS hydrological history. For example, frequent drought events induce physiological adaptation of exposed microbial communities and thus flatten metabolic responses, whereas rare events provoke unbalanced, strong microbial responses. Different potential of microbial resilience to drought stress can irretrievably change microbial communities and functional guilds, gearing cascades of functional responses. Hence, dry-wet events can shift the biogeochemical cycling of organic matter and nutrients to a new equilibrium, thus affecting the dynamic balance between carbon burial and mineralization in kettle holes.}, language = {en} } @misc{ErdossyHorvathYarmanetal.2016, author = {Erdossy, Julia and Horvath, Viola and Yarman, Aysu and Scheller, Frieder W. and Gyurcsanyi, Robert E.}, title = {Electrosynthesized molecularly imprinted polymers for protein recognition}, series = {Trends in Analytical Chemistry}, volume = {79}, journal = {Trends in Analytical Chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0165-9936}, doi = {10.1016/j.trac.2015.12.018}, pages = {179 -- 190}, year = {2016}, abstract = {Molecularly imprinted polymers (MIPs) for the recognition of proteins are expected to possess high affinity through the establishment of multiple interactions between the polymer matrix and the large number of functional groups of the target. However, while highly affine recognition sites need building blocks rich in complementary functionalities to their target, such units are likely to generate high levels of nonspecific binding. This paradox, that nature solved by evolution for biological receptors, needs to be addressed by the implementation of new concepts in molecular imprinting of proteins. Additionally, the structural variability, large size and incompatibility with a range of monomers made the development of protein MIPs to take a slow start. While the majority of MIP preparation methods are variants of chemical polymerization, the polymerization of electroactive functional monomers emerged as a particularly advantageous approach for chemical sensing application. Electropolymerization can be performed from aqueous solutions to preserve the natural conformation of the protein templates, with high spatial resolution and electrochemical control of the polymerization process. This review compiles the latest results, identifying major trends and providing an outlook on the perspectives of electrosynthesised protein-imprinted MIPs for chemical sensing. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @misc{TangMcGinnisIonescuetal.2016, author = {Tang, Kam W. and McGinnis, Daniel F. and Ionescu, Danny and Großart, Hans-Peter}, title = {Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {3}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {American Chemical Society}, address = {Washington}, issn = {2328-8930}, doi = {10.1021/acs.estlett.6b00150}, pages = {227 -- 233}, year = {2016}, abstract = {Active methane production in oxygenated lake waters challenges the long-standing paradigm that microbial methane production occurs only under anoxic conditions and forces us to rethink the ecology and environmental dynamics of this powerful greenhouse gas. Methane production in the upper oxic water layers places the methane source closer to the air water interface, where convective mixing and microbubble detrainment can lead to a methane efflux higher than that previously assumed. Microorganisms may produce methane in oxic environments by being equipped with enzymes to counteract the effects of molecular oxygen during methanogenesis or using alternative pathways that do not involve oxygen-sensitive enzymes. As this process appears to be influenced by thermal stratification, water transparency, and primary production, changes in lake ecology due to climate change will alter methane formation in oxic water layers, with far-reaching consequences for methane flux and climate feedback.}, language = {en} } @misc{MengerYarmanErdoessyetal.2016, author = {Menger, Marcus and Yarman, Aysu and Erd{\"o}ssy, J{\´u}lia and Yildiz, Huseyin Bekir and Gyurcs{\´a}nyi, R{\´o}bert E. and Scheller, Frieder W.}, title = {MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing}, series = {Biosensors : open access journal}, volume = {6}, journal = {Biosensors : open access journal}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios6030035}, pages = {4399 -- 4413}, year = {2016}, abstract = {Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.}, language = {en} } @misc{YanChenKaufmann2016, author = {Yan, Wenhao and Chen, Dijun and Kaufmann, Kerstin}, title = {Molecular mechanisms of floral organ specification by MADS domain proteins}, series = {Current opinion in plant biology}, volume = {29}, journal = {Current opinion in plant biology}, publisher = {Elsevier}, address = {London}, issn = {1369-5266}, doi = {10.1016/j.pbi.2015.12.004}, pages = {154 -- 162}, year = {2016}, abstract = {Flower development is a model system to understand organ specification in plants. The identities of different types of floral organs are specified by homeotic MADS transcription factors that interact in a combinatorial fashion. Systematic identification of DNA-binding sites and target genes of these key regulators show that they have shared and unique sets of target genes. DNA binding by MADS proteins is not based on 'simple' recognition of a specific DNA sequence, but depends on DNA structure and combinatorial interactions. Homeotic MADS proteins regulate gene expression via alternative mechanisms, one of which may be to modulate chromatin structure and accessibility in their target gene promoters.}, language = {en} } @misc{MahlowOrzechowskiFettke2016, author = {Mahlow, Sebastian and Orzechowski, Slawomir and Fettke, J{\"o}rg}, title = {Starch phosphorylation: insights and perspectives}, series = {Cellular and molecular life sciences}, volume = {73}, journal = {Cellular and molecular life sciences}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-016-2248-4}, pages = {2753 -- 2764}, year = {2016}, abstract = {During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal gamma-phosphate group to water and the beta-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of alpha-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions.}, language = {en} } @misc{TeraoRomaoLeimkuehleretal.2016, author = {Terao, Mineko and Romao, Maria Joao and Leimk{\"u}hler, Silke and Bolis, Marco and Fratelli, Maddalena and Coelho, Catarina and Santos-Silva, Teresa and Garattini, Enrico}, title = {Structure and function of mammalian aldehyde oxidases}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {90}, journal = {Archives of toxicology : official journal of EUROTOX}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-016-1683-1}, pages = {753 -- 780}, year = {2016}, abstract = {Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX.}, language = {en} } @misc{HaackAbdelilahSeyfried2016, author = {Haack, Timm and Abdelilah-Seyfried, Salim}, title = {The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis}, series = {Development : Company of Biologists}, volume = {143}, journal = {Development : Company of Biologists}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.131425}, pages = {373 -- 386}, year = {2016}, abstract = {Endocardial cells are cardiac endothelial cells that line the interior of the heart tube. Historically, their contribution to cardiac development has mainly been considered from a morphological perspective. However, recent studies have begun to define novel instructive roles of the endocardium, as a sensor and signal transducer of biophysical forces induced by blood flow, and as an angiocrine signalling centre that is involved in myocardial cellular morphogenesis, regeneration and reprogramming. In this Review, we discuss how the endocardium develops, how endocardial-myocardial interactions influence the developing embryonic heart, and how the dysregulation of blood flowresponsive endocardial signalling can result in pathophysiological changes.}, language = {en} } @misc{PearsonDittmannMazmouzetal.2016, author = {Pearson, Leanne A. and Dittmann, Elke and Mazmouz, Rabia and Ongley, Sarah E. and Neilan, Brett A.}, title = {The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria}, series = {Harmful algae}, volume = {54}, journal = {Harmful algae}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1568-9883}, doi = {10.1016/j.hal.2015.11.002}, pages = {98 -- 111}, year = {2016}, abstract = {The production of toxic metabolites by cyanobacterial blooms represents a significant threat to the health of humans and ecosystems worldwide. Here we summarize the current state of the knowledge regarding the genetics, biosynthesis and regulation of well-characterized cyanotoxins, including the microcystins, nodularin, cylindrospermopsin, saxitoxins and antitoxins, as well as the lesser-known marine toxins (e.g. lyngbyatoxin, aplysiatoxin, jamaicamides, barbamide, curacin, hectochlorin and apratoxins). (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @misc{NickersonAtalagdeBonoetal.2016, author = {Nickerson, David and Atalag, Koray and de Bono, Bernard and Geiger, Joerg and Goble, Carole and Hollmann, Susanne and Lonien, Joachim and Mueller, Wolfgang and Regierer, Babette and Stanford, Natalie J. and Golebiewski, Martin and Hunter, Peter}, title = {The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable}, series = {Interface focus}, volume = {6}, journal = {Interface focus}, publisher = {Royal Society}, address = {London}, issn = {2042-8898}, doi = {10.1098/rsfs.2015.0103}, pages = {57 -- 61}, year = {2016}, abstract = {Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome.}, language = {en} }