@phdthesis{Schick2013, author = {Schick, Daniel}, title = {Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68827}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects.}, language = {en} } @phdthesis{Kegelmann2019, author = {Kegelmann, Lukas}, title = {Advancing charge selective contacts for efficient monolithic perovskite-silicon tandem solar cells}, doi = {10.25932/publishup-42642}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426428}, school = {Universit{\"a}t Potsdam}, pages = {v, 155}, year = {2019}, abstract = {Hybrid organic-inorganic perovskites are one of the most promising material classes for photovoltaic energy conversion. In solar cells, the perovskite absorber is sandwiched between n- and p-type contact layers which selectively transport electrons and holes to the cell's cathode and anode, respectively. This thesis aims to advance contact layers in perovskite solar cells and unravel the impact of interface and contact properties on the device performance. Further, the contact materials are applied in monolithic perovskite-silicon heterojunction (SHJ) tandem solar cells, which can overcome the single junction efficiency limits and attract increasing attention. Therefore, all contact layers must be highly transparent to foster light harvesting in the tandem solar cell design. Besides, the SHJ device restricts processing temperatures for the selective contacts to below 200°C. A comparative study of various electron selective contact materials, all processed below 180°C, in n-i-p type perovskite solar cells highlights that selective contacts and their interfaces to the absorber govern the overall device performance. Combining fullerenes and metal-oxides in a TiO2/PC60BM (phenyl-C60-butyric acid methyl ester) double-layer contact allows to merge good charge extraction with minimized interface recombination. The layer sequence thereby achieved high stabilized solar cell performances up to 18.0\% and negligible current-voltage hysteresis, an otherwise pronounced phenomenon in this device design. Double-layer structures are therefore emphasized as a general concept to establish efficient and highly selective contacts. Based on this success, the concept to combine desired properties of different materials is transferred to the p-type contact. Here, a mixture of the small molecule Spiro-OMeTAD [2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluoren] and the doped polymer PEDOT [poly(3,4-ethylenedioxythiophene)] is presented as a novel hole selective contact. PEDOT thereby remarkably suppresses charge recombination at the perovskite surface, allowing an increase of quasi-Fermi level splitting in the absorber. Further, the addition of Spiro-OMeTAD into the PEDOT layer is shown to enhance charge extraction at the interface and allow high efficiencies up to 16.8\%. Finally, the knowledge on contact properties is applied to monolithic perovskite-SHJ tandem solar cells. The main goal is to optimize the top contact stack of doped Spiro-OMeTAD/molybdenum oxide(MoOx)/ITO towards higher transparency by two different routes. First, fine-tuning of the ITO deposition to mitigate chemical reduction of MoOx and increase the transmittance of MoOx/ITO stacks by 25\%. Second, replacing Spiro-OMeTAD with the alternative hole transport materials PEDOT/Spiro-OMeTAD mixtures, CuSCN or PTAA [poly(triaryl amine)]. Experimental results determine layer thickness constrains and validate optical simulations, which subsequently allow to realistically estimate the respective tandem device performances. As a result, PTAA represents the most promising replacement for Spiro-OMeTAD, with a projected increase of the optimum tandem device efficiency for the herein used architecture by 2.9\% relative to 26.5\% absolute. The results also reveal general guidelines for further performance gains of the technology.}, language = {en} } @phdthesis{Caprioglio2020, author = {Caprioglio, Pietro}, title = {Non-radiative recombination losses in perovskite solar cells}, doi = {10.25932/publishup-47763}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-477630}, school = {Universit{\"a}t Potsdam}, pages = {vi, 242}, year = {2020}, abstract = {In the last decade the photovoltaic research has been preponderantly overturned by the arrival of metal halide perovskites. The introduction of this class of materials in the academic research for renewable energy literally shifted the focus of a large number of research groups and institutions. The attractiveness of halide perovskites lays particularly on their skyrocketing efficiencies and relatively simple and cheap fabrication methods. Specifically, the latter allowed for a quick development of this research in many universities and institutes around the world at the same time. The outcome has been a fast and beneficial increase in knowledge with a consequent terrific improvement of this new technology. On the other side, the enormous amount of research promoted an immense outgrowth of scientific literature, perpetually published. Halide perovskite solar cells are now effectively competing with other established photovoltaic technologies in terms of power conversion efficiencies and production costs. Despite the tremendous improvement, a thorough understanding of the energy losses in these systems is of imperative importance to unlock the full thermodynamic potential of this material. This thesis focuses on the understanding of the non-radiative recombination processes in the neat perovskite and in complete devices. Specifically, photoluminescence quantum yield (PLQY) measurements were applied to multilayer stacks and cells under different illumination conditions to accurately determine the quasi-Fermi levels splitting (QFLS) in the absorber, and compare it with the external open-circuit voltage of the device (V_OC). Combined with drift-diffusion simulations, this approach allowed us to pinpoint the sites of predominant recombination, but also to investigate the dynamics of the underlying processes. As such, the internal and external ideality factors, associated to the QFLS and V_OC respectively, are studied with the aim of understanding the type of recombination processes taking place in the multilayered architecture of the device. Our findings highlight the failure of the equality between QFLS and V_OC in the case of strong interface recombination, as well as the detrimental effect of all commonly used transport layers in terms of V_OC losses. In these regards, we show how, in most perovskite solar cells, different recombination processes can affect the internal QFLS and the external V_OC and that interface recombination dictates the V_OC losses. This line of arguments allowed to rationalize that, in our devices, the external ideality factor is completely dominated by interface recombination, and that this process can alone be responsible for values of the ideality factor between 1 and 2, typically observed in perovskite solar cells. Importantly, our studies demonstrated how strong interface recombination can lower the ideality factor towards values of 1, often misinterpreted as pure radiative second order recombination. As such, a comprehensive understanding of the recombination loss mechanisms currently limiting the device performance was achieved. In order to reach the full thermodynamic potential of the perovskite absorber, the interfaces of both the electron and hole transport layers (ETL/HTL) must be properly addressed and improved. From here, the second part of the research work is devoted on reducing the interfacial non-radiative energy losses by optimizing the structure and energetics of the relevant interface in our solar cell devices, with the aim of bringing their quasi-Fermi level splitting closer to its radiative limit. As such, the interfaces have been carefully addressed and optimized with different methodologies. First, a small amount of Sr is added into the perovskite precursor solution with the effect of effectively reducing surface and interface recombination. In this case, devices with V_OC up to 1.23 V were achieved and the energy losses were minimized to as low as 100 meV from the radiative limit of the material. Through a combination of different methods, we showed that these improvements are related to a strong n-type surface doping, which repels the holes in the perovskite from the surface and the interface with the ETL. Second, a more general device improvement was achieved by depositing a defect-passivating poly(ionic-liquid) layer on top of the perovskite absorber. The resulting devices featured a concomitant improvement of the V_OC and fill factor, up to 1.17 V and 83\% respectively, reaching efficiency as high as 21.4\%. Moreover, the protecting polymer layer helped to enhance the stability of the devices under prolonged maximum power point tracking measurements. Lastly, PLQY measurements are used to investigate the recombination mechanisms in halide-segregated large bandgap perovskite materials. Here, our findings showed how few iodide-rich low-energy domains act as highly efficient radiative recombination centers, capable of generating PLQY values up to 25\%. Coupling these results with a detailed microscopic cathodoluminescence analysis and absorption profiles allowed to demonstrate how the emission from these low energy domains is due to the trapping of the carriers photogenerated in the Br-rich high-energy domains. Thereby, the strong implications of this phenomenon are discussed in relation to the failure of the optical reciprocity between absorption and emission and on the consequent applicability of the Shockley-Queisser theory for studying the energy losses such systems. In conclusion, the identification and quantification of the non-radiative QFLS and V_OC losses provided a base knowledge of the fundamental limitation of perovskite solar cells and served as guidance for future optimization and development of this technology. Furthermore, by providing practical examples of solar cell improvements, we corroborated the correctness of our fundamental understanding and proposed new methodologies to be further explored by new generations of scientists.}, language = {en} } @phdthesis{Simsek2022, author = {Simsek, Ibrahim}, title = {Ink-based preparation of chalcogenide perovskites as thin films for PV applications}, doi = {10.25932/publishup-57271}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572711}, school = {Universit{\"a}t Potsdam}, pages = {iv, 113}, year = {2022}, abstract = {The increasing demand for energy in the current technological era and the recent political decisions about giving up on nuclear energy diverted humanity to focus on alternative environmentally friendly energy sources like solar energy. Although silicon solar cells are the product of a matured technology, the search for highly efficient and easily applicable materials is still ongoing. These properties made the efficiency of halide perovskites comparable with silicon solar cells for single junctions within a decade of research. However, the downside of halide perovskites are poor stability and lead toxicity for the most stable ones. On the other hand, chalcogenide perovskites are one of the most promising absorber materials for the photovoltaic market, due to their elemental abundance and chemical stability against moisture and oxygen. In the search of the ultimate solar absorber material, combining the good optoelectronic properties of halide perovskites with the stability of chalcogenides could be the promising candidate. Thus, this work investigates new techniques for the synthesis and design of these novel chalcogenide perovskites, that contain transition metals as cations, e.g., BaZrS3, BaHfS3, EuZrS3, EuHfS3 and SrHfS3. There are two stages in the deposition techniques of this study: In the first stage, the binary compounds are deposited via a solution processing method. In the second stage, the deposited materials are annealed in a chalcogenide atmosphere to form the perovskite structure by using solid-state reactions. The research also focuses on the optimization of a generalized recipe for a molecular ink to deposit precursors of chalcogenide perovskites with different binaries. The implementation of the precursor sulfurization resulted in either binaries without perovskite formation or distorted perovskite structures, whereas some of these materials are reported in the literature as they are more favorable in the needle-like non-perovskite configuration. Lastly, there are two categories for the evaluation of the produced materials: The first category is about the determination of the physical properties of the deposited layer, e.g., crystal structure, secondary phase formation, impurities, etc. For the second category, optoelectronic properties are measured and compared to an ideal absorber layer, e.g., band gap, conductivity, surface photovoltage, etc.}, language = {en} } @phdthesis{Hussein2024, author = {Hussein, Mahmoud}, title = {Solvent engineering for highly-efficiency lead-free perovskite solar cells}, doi = {10.25932/publishup-63037}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630375}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2024}, abstract = {Global warming, driven primarily by the excessive emission of greenhouse gases such as carbon dioxide into the atmosphere, has led to severe and detrimental environmental impacts. Rising global temperatures have triggered a cascade of adverse effects, including melting glaciers and polar ice caps, more frequent and intense heat waves disrupted weather patterns, and the acidification of oceans. These changes adversely affect ecosystems, biodiversity, and human societies, threatening food security, water availability, and livelihoods. One promising solution to mitigate the harmful effects of global warming is the widespread adoption of solar cells, also known as photovoltaic cells. Solar cells harness sunlight to generate electricity without emitting greenhouse gases or other pollutants. By replacing fossil fuel-based energy sources, solar cells can significantly reduce CO2 emissions, a significant contributor to global warming. This transition to clean, renewable energy can help curb the increasing concentration of greenhouse gases in the atmosphere, thereby slowing down the rate of global temperature rise. Solar energy's positive impact extends beyond emission reduction. As solar panels become more efficient and affordable, they empower individuals, communities, and even entire nations to generate electricity and become less dependent on fossil fuels. This decentralized energy generation can enhance resilience in the face of climate-related challenges. Moreover, implementing solar cells creates green jobs and stimulates technological innovation, further promoting sustainable economic growth. As solar technology advances, its integration with energy storage systems and smart grids can ensure a stable and reliable energy supply, reducing the need for backup fossil fuel power plants that exacerbate environmental degradation. The market-dominant solar cell technology is silicon-based, highly matured technology with a highly systematic production procedure. However, it suffers from several drawbacks, such as: 1) Cost: still relatively high due to high energy consumption due to the need to melt and purify silicon, and the use of silver as an electrode, which hinders their widespread availability, especially in low-income countries. 2) Efficiency: theoretically, it should deliver around 29\%; however, the efficiency of most of the commercially available silicon-based solar cells ranges from 18 - 22\%. 3) Temperature sensitivity: The efficiency decreases with the increase in the temperature, affecting their output. 4) Resource constraints: silicon as a raw material is unavailable in all countries, creating supply chain challenges. Perovskite solar cells arose in 2011 and matured very rapidly in the last decade as a highly efficient and versatile solar cell technology. With an efficiency of 26\%, high absorption coefficients, solution processability, and tunable band gap, it attracted the attention of the solar cells community. It represented a hope for cheap, efficient, and easily processable next-generation solar cells. However, lead toxicity might be the block stone hindering perovskite solar cells' market reach. Lead is a heavy and bioavailable element that makes perovskite solar cells environmentally unfriendly technology. As a result, scientists try to replace lead with a more environmentally friendly element. Among several possible alternatives, tin was the most suitable element due to its electronic and atomic structure similarity to lead. Tin perovskites were developed to alleviate the challenge of lead toxicity. Theoretically, it shows very high absorption coefficients, an optimum band gap of 1.35 eV for FASnI3, and a very high short circuit current, which nominates it to deliver the highest possible efficiency of a single junction solar cell, which is around 30.1\% according to Schockly-Quisser limit. However, tin perovskites' efficiency still lags below 15\% and is irreproducible, especially from lab to lab. This humble performance could be attributed to three reasons: 1) Tin (II) oxidation to tin (IV), which would happen due to oxygen, water, or even by the effect of the solvent, as was discovered recently. 2) fast crystallization dynamics, which occurs due to the lateral exposure of the P-orbitals of the tin atom, which enhances its reactivity and increases the crystallization pace. 3) Energy band misalignment: The energy bands at the interfaces between the perovskite absorber material and the charge selective layers are not aligned, leading to high interfacial charge recombination, which devastates the photovoltaic performance. To solve these issues, we implemented several techniques and approaches that enhanced the efficiency of tin halide perovskites, providing new chemically safe solvents and antisolvents. In addition, we studied the energy band alignment between the charge transport layers and the tin perovskite absorber. Recent research has shown that the principal source of tin oxidation is the solvent known as dimethylsulfoxide, which also happens to be one of the most effective solvents for processing perovskite. The search for a stable solvent might prove to be the factor that makes all the difference in the stability of tin-based perovskites. We started with a database of over 2,000 solvents and narrowed it down to a series of 12 new solvents that are suitable for processing FASnI3 experimentally. This was accomplished by looking into 1) the solubility of the precursor chemicals FAI and SnI2, 2) the thermal stability of the precursor solution, and 3) the potential to form perovskite. Finally, we show that it is possible to manufacture solar cells using a novel solvent system that outperforms those produced using DMSO. The results of our research give some suggestions that may be used in the search for novel solvents or mixes of solvents that can be used to manufacture stable tin-based perovskites. Due to the quick crystallization of tin, it is more difficult to deposit tin-based perovskite films from a solution than manufacturing lead-based perovskite films since lead perovskite is more often utilized. The most efficient way to get high efficiencies is to deposit perovskite from dimethyl sulfoxide (DMSO), which slows down the quick construction of the tin-iodine network that is responsible for perovskite synthesis. This is the most successful approach for achieving high efficiencies. Dimethyl sulfoxide, which is used in the processing, is responsible for the oxidation of tin, which is a disadvantage of this method. This research presents a potentially fruitful alternative in which 4-(tert-butyl) pyridine can substitute dimethyl sulfoxide in the process of regulating crystallization without causing tin oxidation to take place. Perovskite films that have been formed from pyridine have been shown to have a much-reduced defect density. This has resulted in increased charge mobility and better photovoltaic performance, making pyridine a desirable alternative for use in the deposition of tin perovskite films. The precise control of perovskite precursor crystallization inside a thin film is of utmost importance for optimizing the efficiency and manufacturing of solar cells. The deposition process of tin-based perovskite films from a solution presents difficulties due to the quick crystallization of tin compared to the more often employed lead perovskite. The optimal approach for attaining elevated efficiencies entails using dimethyl sulfoxide (DMSO) as a medium for depositing perovskite. This choice of solvent impedes the tin-iodine network's fast aggregation, which plays a crucial role in the production of perovskite. Nevertheless, this methodology is limited since the utilization of dimethyl sulfoxide leads to the oxidation of tin throughout the processing stage. In this thesis, we present a potentially advantageous alternative approach wherein 4-(tert-butyl) pyridine is proposed as a substitute for dimethyl sulfoxide in regulating crystallization processes while avoiding the undesired consequence of tin oxidation. Films of perovskite formed using pyridine as a solvent have a notably reduced density of defects, resulting in higher mobility of charges and improved performance in solar applications. Consequently, the utilization of pyridine for the deposition of tin perovskite films is considered advantageous. Tin perovskites are suffering from an apparent energy band misalignment. However, the band diagrams published in the current body of research display contradictions, resulting in a dearth of unanimity. Moreover, comprehensive information about the dynamics connected with charge extraction is lacking. This thesis aims to ascertain the energy band locations of tin perovskites by employing the kelvin probe and Photoelectron yield spectroscopy methods. This thesis aims to construct a precise band diagram for the often-utilized device stack. Moreover, a comprehensive analysis is performed to assess the energy deficits inherent in the current energetic structure of tin halide perovskites. In addition, we investigate the influence of BCP on the improvement of electron extraction in C60/BCP systems, with a specific emphasis on the energy factors involved. Furthermore, transient surface photovoltage was utilized to investigate the charge extraction kinetics of frequently studied charge transport layers, such as NiOx and PEDOT as hole transport layers and C60, ICBA, and PCBM as electron transport layers. The Hall effect, KP, and TRPL approaches accurately ascertain the p-doping concentration in FASnI3. The results consistently demonstrated a value of 1.5 * 1017 cm-3. Our research findings highlight the imperative nature of autonomously constructing the charge extraction layers for tin halide perovskites, apart from those used for lead perovskites. The crystallization of perovskite precursors relies mainly on the utilization of two solvents. The first one dissolves the perovskite powder to form the precursor solution, usually called the solvent. The second one precipitates the perovskite precursor, forming the wet film, which is a supersaturated solution of perovskite precursor and in the remains of the solvent and the antisolvent. Later, this wet film crystallizes upon annealing into a full perovskite crystallized film. In our research context, we proposed new solvents to dissolve FASnI3, but when we tried to form a film, most of them did not crystallize. This is attributed to the high coordination strength between the metal halide and the solvent molecules, which is unbreakable by the traditionally used antisolvents such as Toluene and Chlorobenzene. To solve this issue, we introduce a high-throughput antisolvent screening in which we screened around 73 selected antisolvents against 15 solvents that can form a 1M FASnI3 solution. We used for the first time in tin perovskites machine learning algorithm to understand and predict the effect of an antisolvent on the crystallization of a precursor solution in a particular solvent. We relied on film darkness as a primary criterion to judge the efficacy of a solvent-antisolvent pair. We found that the relative polarity between solvent and antisolvent is the primary factor that affects the solvent-antisolvent interaction. Based on our findings, we prepared several high-quality tin perovskite films free from DMSO and achieved an efficiency of 9\%, which is the highest DMSO tin perovskite device so far.}, language = {en} }