@article{CzesnickLenhard2016, author = {Czesnick, Hj{\"o}rdis and Lenhard, Michael}, title = {Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana}, series = {The plant journal}, volume = {88}, journal = {The plant journal}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13280}, pages = {570 -- 583}, year = {2016}, abstract = {Polyadenylation is a critical 3-end processing step during maturation of pre-mRNAs, and the length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerase (PAPS) isoforms fulfilling specialized functions, as reflected by their different mutant phenotypes. While PAPS1 affects several processes, such as the immune response, organ growth and male gametophyte development, the roles of PAPS2 and PAPS4 are largely unknown. Here we demonstrate that PAPS2 and PAPS4 promote flowering in a partially redundant manner. The enzymes act antagonistically to PAPS1, which delays the transition to flowering. The opposite flowering-time phenotypes in paps1 and paps2 paps4 mutants are at least partly due to decreased or increased FLC activity, respectively. In contrast to paps2 paps4 mutants, plants with increased PAPS4 activity flower earlier than the wild-type, concomitant with reduced FLC expression. Double mutant analyses suggest that PAPS2 and PAPS4 act independently of the autonomous pathway components FCA, FY and CstF64. The direct polyadenylation targets of the three PAPS isoforms that mediate their effects on flowering time do not include FLC sense mRNA and remain to be identified. Thus, our results uncover a role for canonical PAPS isoforms in flowering-time control, raising the possibility that modulating the balance of the isoform activities could be used to fine tune the transition to flowering. Significance Statement The length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. Arabidopsis has three isoforms of nuclear poly(A) polymerase (PAPS): PAPS1 plays a major role in organ growth and plant defence. Here we show that PAPS2 and PAPS4 redundantly promote flowering and act antagonistically to PAPS1, which delays flowering. We suggest that modulating the activity of these isoforms fine-tunes the transition to flowering.}, language = {en} } @article{TrostViCzesnicketal.2014, author = {Trost, Gerda and Vi, Son Lang and Czesnick, Hj{\"o}rdis and Lange, Peggy and Holton, Nick and Giavalisco, Patrick and Zipfel, Cyril and Kappel, Christian and Lenhard, Michael}, title = {Arabidopsis poly(A) polymerase PAPS1 limits founder-cell recruitment to organ primordia and suppresses the salicylic acid-independent immune response downstream of EDS1/PAD4}, series = {The plant journal}, volume = {77}, journal = {The plant journal}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.12421}, pages = {688 -- 699}, year = {2014}, abstract = {Polyadenylation of pre-mRNAs by poly(A) polymerase (PAPS) is a critical process in eukaryotic gene expression. As found in vertebrates, plant genomes encode several isoforms of canonical nuclear PAPS enzymes. In Arabidopsis thaliana these isoforms are functionally specialized, with PAPS1 affecting both organ growth and immune response, at least in part by the preferential polyadenylation of subsets of pre-mRNAs. Here, we demonstrate that the opposite effects of PAPS1 on leaf and flower growth reflect the different identities of these organs, and identify a role for PAPS1 in the elusive connection between organ identity and growth patterns. The overgrowth of paps1 mutant petals is due to increased recruitment of founder cells into early organ primordia, and suggests that PAPS1 activity plays unique roles in influencing organ growth. By contrast, the leaf phenotype of paps1 mutants is dominated by a constitutive immune response that leads to increased resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis and reflects activation of the salicylic acid-independent signalling pathway downstream of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)/PHYTOALEXIN DEFICIENT4 (PAD4). These findings provide an insight into the developmental and physiological basis of the functional specialization amongst plant PAPS isoforms.}, language = {en} }