@article{MyachykovCangelosiEllisetal.2015, author = {Myachykov, Andriy and Cangelosi, Angelo and Ellis, Rob and Fischer, Martin H.}, title = {The oculomotor resonance effect in spatial-numerical mapping}, series = {Acta psychologica : international journal of psychonomics}, volume = {161}, journal = {Acta psychologica : international journal of psychonomics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0001-6918}, doi = {10.1016/j.actpsy.2015.09.006}, pages = {162 -- 169}, year = {2015}, abstract = {We investigated automatic Spatial-Numerical Association of Response Codes (SNARC) effect in auditory number processing. Two experiments continually measured spatial characteristics of ocular drift at central fixation during and after auditory number presentation. Consistent with the notion of a spatially oriented mental number line, we found spontaneous magnitude-dependent gaze adjustments, both with and without a concurrent saccadic task. This fixation adjustment (1) had a small-number/left-lateralized bias and (2) it was biphasic as it emerged for a short time around the point of lexical access and it received later robust representation around following number onset. This pattern suggests a two-step mechanism of sensorimotor mapping between numbers and space a first-pass bottom-up activation followed by a top-down and more robust horizontal SNARC Our results inform theories of number processing as well as simulation-based approaches to cognition by identifying the characteristics of an oculomotor resonance phenomenon. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{ApelCangelosiEllisetal.2012, author = {Apel, Jens K. and Cangelosi, Angelo and Ellis, Rob and Goslin, Jeremy and Fischer, Martin H.}, title = {Object affordance influences instruction span}, series = {Experimental brain research}, volume = {223}, journal = {Experimental brain research}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-012-3251-0}, pages = {199 -- 206}, year = {2012}, abstract = {We measured memory span for assembly instructions involving objects with handles oriented to the left or right side. Right-handed participants remembered more instructions when objects' handles were spatially congruent with the hand used in forthcoming assembly actions. No such affordance-based memory benefit was found for left-handed participants. These results are discussed in terms of motor simulation as an embodied rehearsal mechanism.}, language = {en} }