@article{SarauliPetersXuetal.2014, author = {Sarauli, David and Peters, Kristina and Xu, Chenggang and Schulz, Burkhard and Fattakhova-Rohlfing, Dina and Lisdat, Fred}, title = {3D-Electrode architectures for enhanced direct bioelectrocatalysis of pyrroloquinoline quinone-dependent glucose dehydrogenase}, series = {ACS applied materials \& interfaces}, volume = {6}, journal = {ACS applied materials \& interfaces}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am5046026}, pages = {17887 -- 17893}, year = {2014}, abstract = {We report on the fabrication of a complex electrode architecture for efficient direct bioelectrocatalysis. In the developed procedure, the redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase entrapped in a sulfonated polyaniline [poly(2-methoxyaniline-5-sulfonic acid)-co-aniline] was immobilized on macroporous indium tin oxide (macroITO) electrodes. The use of the 3D-conducting scaffold with a large surface area in combination with the conductive polymer enables immobilization of large amounts of enzyme and its efficient communication with the electrode, leading to enhanced direct bioelectrocatalysis. In the presence of glucose, the fabricated bioelectrodes show an exceptionally high direct bioelectrocatalytical response without any additional mediator. The catalytic current is increased more than 200-fold compared to planar ITO electrodes. Together with a high long-term stability (the current response is maintained for >90\% of the initial value even after 2 weeks of storage), the transparent 3D macroITO structure with a conductive polymer represents a valuable basis for the construction of highly efficient bioelectronic units, which are useful as indicators for processes liberating glucose and allowing optical and electrochemical transduction.}, language = {en} } @article{AksuFrascaWollenbergeretal.2011, author = {Aksu, Yilmaz and Frasca, Stefano and Wollenberger, Ursula and Driess, Matthias and Thomas, Arne}, title = {A molecular precursor approach to tunable porous tin-rich indium tin oxide with durable high electrical conductivity for bioelectronic devices}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {23}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/cm103087p}, pages = {1798 -- 1804}, year = {2011}, abstract = {The preparation of porous, i.e., high surface area electrodes from transparent conducting oxides, is a valuable goal in materials chemistry as such electrodes can enable further development of optoelectronic, electrocatalytic, or bioelectronic devices. In this work the first tin-rich mesoporous indium tin oxide is prepared using the molecular heterobimetallic single-source precursor, indium tin tris-tert-butoxide, together with an appropriate structure-directing template, yielding materials with high surface areas and tailorable pore size. The resulting mesoporous tin-rich ITO films show a high and durable electrical conductivity and transparency, making them interesting materials for hosting electroactive biomolecules such as proteins. In fact, its unique performance in bioelectronic applications has been demonstrated by immobilization of high amounts of cytochrome c into the mesoporous film which undergo redox processes directly with the conductive electrode material.}, language = {en} }