@article{SchubertFrischAllardetal.2017, author = {Schubert, Marcel and Frisch, Johannes and Allard, Sybille and Preis, Eduard and Scherf, Ullrich and Koch, Norbert and Neher, Dieter}, title = {Tuning side chain and main chain order in a prototypical donor-acceptor copolymer}, series = {Elementary Processes in Organic Photovoltaics}, volume = {272}, journal = {Elementary Processes in Organic Photovoltaics}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-28338-8}, issn = {0065-3195}, doi = {10.1007/978-3-319-28338-8_10}, pages = {243 -- 265}, year = {2017}, abstract = {The recent development of donor-acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure-property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties.}, language = {en} } @article{BurekKrauseSchwotzeretal.2018, author = {Burek, Katja and Krause, Felix and Schwotzer, Matthias and Nefedov, Alexei and S{\"u}ssmuth, Julia and Haubitz, Toni and Kumke, Michael Uwe and Thissen, Peter}, title = {Hydrophobic Properties of Calcium-Silicate Hydrates Doped with Rare-Earth Elements}, series = {ACS sustainable chemistry \& engineering}, volume = {6}, journal = {ACS sustainable chemistry \& engineering}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2168-0485}, doi = {10.1021/acssuschemeng.8b03244}, pages = {14669 -- 14678}, year = {2018}, abstract = {In this study, the apparent relationship between the transport process and the surface chemistry of the Calcium-Silicate Hydrate (CSH) phases was investigated. For this purpose, a method was developed to synthesize ultrathin CSH phases to be used as a model substrate with the specific modification of their structure by introducing europium (Eu(III)). The structural and chemical changes during this Eu(III)-doping were observed by means of infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), and time-resolved laser fluorescence spectroscopy (TRLFS). These alterations of the CSH phases led to significant changes in the surface chemistry and consequently to considerable variations in the interaction with water, as evidenced by measurements of the contact angles on the modified model substrates. Our results provide the basis for a more profound molecular understanding of reactive transport processes in cement-based systems. Furthermore, these results broaden the perspective of improving the stability of cement-based materials, which are subjected to the impact of aggressive aqueous environments through targeted modifications of the CSH phases.}, language = {en} } @article{SchulzLieutenantXiaoetal.2020, author = {Schulz, Christian and Lieutenant, Klaus and Xiao, Jie and Hofmann, Tommy and Wong, Deniz and Habicht, Klaus}, title = {Characterization of the soft X-ray spectrometer PEAXIS at BESSY II}, series = {Journal of synchrotron radiation}, volume = {27}, journal = {Journal of synchrotron radiation}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {1600-5775}, doi = {10.1107/S1600577519014887}, pages = {238 -- 249}, year = {2020}, abstract = {The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 10(12) photons s(-1) within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of similar to 400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106 degrees within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to similar to 100 meV at 1000 eV incident photon energy are discussed.}, language = {en} } @article{KroenerEhlertSaalfranketal.2011, author = {Kr{\"o}ner, Dominik and Ehlert, Christopher and Saalfrank, Peter and Holl{\"a}nder, Andreas}, title = {Ab initio calculations for XPS chemical shifts of poly(vinyl-trifluoroacetate) using trimer models}, series = {Surface science}, volume = {605}, journal = {Surface science}, number = {15-16}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0039-6028}, doi = {10.1016/j.susc.2011.05.021}, pages = {1516 -- 1524}, year = {2011}, abstract = {X-ray photoelectron spectra (XPS) of the polymer poly(vinyl-trifluoroacetate) show C(1s) binding energy shifts which are unusual because they are influenced by atoms which are several bonds away from the probed atom. In this work, the influence of the trifluoroacetate substituent on the 1s ionization potential of the carbon atoms of the polyethylene chain is investigated theoretically using mono-substituted, diad and triad models of trimers representing the polymer. Carbon 1s ionization energies are calculated by the Hartree-Fock theory employing Koopmans' theorem. The influence of the configuration and conformation of the functional groups as well as the degree of substitution are found to be important determinants of XPS spectra. It is further found that the 1s binding energy correlates in a linear fashion, with the total electrostatic potential at the position of the probe atom, and depends not only on nearest neighbor effects. This may have implications for the interpretation of high-resolution XP spectra.}, language = {en} }