@article{AbdissaInduliAkalaetal.2013, author = {Abdissa, Negera and Induli, Martha and Akala, Hoseah M. and Heydenreich, Matthias and Midiwo, Jacob O. and Ndakala, Albert and Yenesew, Abiy}, title = {Knipholone cyclooxanthrone and an anthraquinone dimer with antiplasmodial activities from the roots of Kniphofia foliosa}, series = {Phytochemistry letters}, volume = {6}, journal = {Phytochemistry letters}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2013.02.005}, pages = {241 -- 245}, year = {2013}, abstract = {A new phenylanthrone, named knipholone cyclooxanthrone and a dimeric anthraquinone, 10-methoxy-10,7'-(chrysophanol anthrone)-chrysophanol were isolated from the roots of Kniphofia foliosa together with the rare naphthalene glycoside, dianellin. The structures were determined by NMR and mass spectroscopic techniques. The compounds showed antiplasmodial activities against the chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum with 10-methoxy-10,7'-(chrysophanol anthrone)-chrysophanol being the most active with IC50 values of 1.17 +/- 0.12 and 4.07 +/- 1.54 mu g/ml, respectively.}, language = {en} } @article{AbdissaHeydenreichMidiwoetal.2014, author = {Abdissa, Negera and Heydenreich, Matthias and Midiwo, Jacob O. and Ndakala, Albert and Majer, Zsuzsanna and Neumann, Beate and Stammler, Hans-Georg and Sewald, Norbert and Yenesew, Abiy}, title = {A xanthone and a phenylanthraquinone from the roots of Bulbine frutescens, and the revision of six seco-anthraquinones into xanthones}, series = {Phytochemistry letters}, volume = {9}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2014.04.004}, pages = {67 -- 73}, year = {2014}, abstract = {Phytochemical investigation of the dichloromethane/methanol (1:1) extract of the roots of Bulbine frutescens led to the isolation of a new xanthone, 8-hydroxy-6-methylxanthone-1-carboxylic acid (1) and a new phenylanthraquinone, 6',8-O-dimethylknipholone (2) along with six known compounds. The structures were elucidated on the basis of NMR and MS spectral data analyses. The structure of compound 1 was confirmed through X-ray crystallography which was then used as a reference to propose the revision of the structures of six seco-anthraquinones into xanthones. The isolated compounds were evaluated for cytotoxicity against human cervix carcinoma KB-3-1 cells with the phenylanthraquinone knipholone being the most active (IC50 = 0.43 mu M). Two semi-synthetic knipholone derivatives, knipholone Mannich base and knipholone-1,3-oxazine, were prepared and tested for cytotoxic activity; both showed moderate activities (IC50 value of 1.89 and 2.50 mu M, respectively). (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{AbbasiXuKhezrietal.2022, author = {Abbasi, Ali and Xu, Yaolin and Khezri, Ramin and Etesami, Mohammad and Lin, C. and Kheawhom, Soorathep and Lu, Yan}, title = {Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries}, series = {Materials Today Sustainability}, volume = {18}, journal = {Materials Today Sustainability}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2589-2347}, doi = {10.1016/j.mtsust.2022.100126}, pages = {17}, year = {2022}, abstract = {Zinc-air batteries (ZABs) are gaining popularity for a wide range of applications due to their high energy density, excellent safety, and environmental friendliness. A membrane/separator is a critical component of ZABs, with substantial implications for battery performance and stability, particularly in the case of a battery in solid state format, which has captured increased attention in recent years. In this review, recent advances as well as insight into the architecture of polymeric membrane/separators for ZABs including porous polymer separators (PPSs), gel polymer electrolytes (GPEs), solid polymer electrolytes (SPEs) and anion exchange membranes (AEMs) are discussed. The paper puts forward strategies to enhance stability, ionic conductivity, ionic selectivity, electrolyte storage capacity and mechanical properties for each type of polymeric membrane. In addition, the remaining major obstacles as well as the most potential avenues for future research are examined in detail.}, language = {en} } @article{AbbasVranicHoffmannetal.2018, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {8}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms19082271}, pages = {16}, year = {2018}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @misc{AbbasVranicHoffmannetal.2019, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {701}, issn = {1866-8372}, doi = {10.25932/publishup-42792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427926}, year = {2019}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @article{OPUS4-15433, title = {Preparation of simple and mixed nickel and cobalt molybdates using hybrid precursors made from an ordered polymer matrix and inorganic salts}, year = {2004}, abstract = {The amphiphilic poly(ampholyte) poly(N,N-diallyl-N-hexylamine-alt-maleic acid), bearing simultaneously carboxylic acids, amines and hydrocarbon side chains, was used as a matrix to stabilize inorganic ion species (anionic as well as cationic) generated in aqueous solution from Ni(NO3)(2).6H(2)O, Co(NO3)(2).6H(2)O and (NH4)2MoO(4). Drying produces hybrid organic-inorganic blends which, due to the amphiphilicity of the copolymer, exhibit supramolecular organization in the bulk. Solid state studies show that up to two moles of metal cations (alone or together with metal anions) per repeat unit of the copolymer can be blended without loss of homogeneity in the hybrid material. A systematic screening permitted the determination of the optimal conditions for the preparation of homogeneous blends. Thermal treatment of the hybrid materials produces simple and mixed nickel and/or cobalt molybdates. The alpha- as well as the P- phase were obtained, and the mixed structures are solid solutions of simple NiMoO4 and CoMoO4}, language = {en} } @book{OPUS4-4353, title = {EUCHIS '99 : proceedings of the 3rd international conference of the European Chitin Society, Potsdam, Germany, Aug. 31 - Sept. 3, 1999}, isbn = {978-3-980649-45-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45492}, publisher = {Universit{\"a}t Potsdam}, year = {2000}, abstract = {Contents: Production and Applications of Chitin and Chitosan Krill as a promising raw material for the production of chitin in Europe - Containerized plant for producing chitin - Preparation and characterization of chitosan from Mucorales - Chitosan from Absidia orchidis - Scaling up of lactic acid fermentation of prawn wastes in packed-bed column reactor for chitin recovery - Preparation of chitin by acetic acid fermentation - Inter-source reproducibility of the chitin deacetylation process - Comparative analysis of chitosans from insects and crustacea - Effect of the rate of deacetylation on the physico-chemical properties of cuttlefish chitosan - Deacetylation of chitin by fungal enzymes - Production of partially degraded chitosan with desired molecular weight - Chitin-containing materials Mycoton for wounds treatment - Biological activity of selected forms of chitosan - Application of chitosan on the preservation quality of cut flowers - Preparation and characterization of chitosan films: application in cell cultures - Transport phenomena in chitin gels - Symplex membranes of chitosan and sulphoethylcellulose - Preparation and use of chitosan-Ca pectinate pellets - Bioseparation of protein from cheese whey by using chitosan coagulation and ultrafiltration membranes - Preparation of silk fibroin/chitosan fiber - Preparation of paper sheets containing microcrystalline chitosan - Applications of chitosan in textile printing - Permanent modification of fibrous materials with biopolymers - Ion exchanger from chitosan - Chitosan in waste water treatment - The immobilization of tyrosinase on chitin and chitosan and its possible use in wastewater treatment - Utilization of modified chitosan in aqueous system treatment Biomaterials Chemical and preclinical studies on 6-oxychitin - Diverse biological effects of fungal chitin-glucan complex - Effect of concentration of neutralizing agent on chitosan membrane properties - Preliminary investigation of the compatibility of a chitosan-based peritoneal dialysis solution - Influence of chitosan on the growth of several cellular lines - A new chitosan containing phosphonic group with chelating properties - Biocompatibility of chitin materials using cell culture method Oral Administration of Chitosan Recent results in the oral administration of chitosan - Reduction of absorption of dietary lipids and cholesterol by chitosan, its derivatives and special formulations - Chitosan in weight reduction: results from a large scale consumer study - Conformation of chitosan ascorbic acid salt - Trimethylated chitosans as safe absorption enhancers for transmucosal delivery of peptide drugs - Chitosan derivates as intestinal penetration enhancers of the peptide drug buserelin in vivo and in vitro - Chitosan microparticles for oral vaccination: optimization and characterization - Effect of chitosan in enhancing drug delivery across buccal mucosa - Influence of chitosans on permeability of human intestinal epithelial (Caco-2) cells: The effect of molecular weight, degree of deacetylation and exposure time - Oral polymeric N-acetyl-D-glucosamine as potential treatment for patients with osteoarthritis - Clinicoimmunological efficiency of the chitin-containing drug Mycoton in complex treatment of a chronic hepatitis - Interactions of chitin, chitosan, N-laurylchitosan, and N-dimethylaminopropyl chitosan with olive oil - The chitin-containing preparation Mycoton in a pediatric gastroenterology case - Antifungal activity and release behaviour of cross-linked chitosan films incorporated with chlorhexidine gluconate - Release of N-acetyl-D-glucosamine from chitosan in saliva - Physical and Physicochemical Properties Recent approach of metal binding by chitosan and derivatives - As(V) sorption on molybdate-impregnated chitosan gel beads (MICB) - Influence of medium pH on the biosorption of heavy metals by chitin-containing sorbent Mycoton - Comparative studies on molecular chain parameters of polyelectrolyte chains: the stiffness parameter B and temperature coefficient of intrinsic viscosity of chitosans and poly(diallyldimethylammonium chloride) - Crystalline behavior of chitosan - The relationship between the crystallinity and degree of deacetylation of chitin from crab shell - Reversible water-swellable chitin gel: modulation of swellability - Syneresis aspects of chitosan based gel systems - In situ chitosan gelation using the enzyme tyrosinase - Preparation and characterization of controlling pore size chitosan membranes - Fabrication of porous chitin matrices - Changes of polydispersity and limited molecular weight of ultrasonic treated chitosan - A statistical evaluation of IR spectroscopic methods to determine the degree of acetylation of ?-chitin and chitosan - Products of alkaline hydrolysis of dibutyrylchitin: chemical composition and DSC investigation - Chitosan emulsification properties Chemistry of Chitin and Chitosan Chemically modified chitinous materials: preparation and properties - Progress on the modification of chitosan - The graft copolymerization of chitosan with methyl acrylate using an organohalide-manganese carbonyl coinitiator system - Grafting of 4-vinylpyridine, maleic acid and maleic anhydride onto chitin and chitosan - Peptide synthesis on chitosan/chitin - Graft copolymerization of methyl methacrylate onto mercapto-chitin - Thermal depolymerization of chitosan salts - Radiolysis and sonolysis of chitosan - two convenient techniques for a controlled reduction of molecular weight - Thermal and UV degradation of chitosan - Heat-induced physicochemical changes in highly deacetylated chitosan - Chitosan fiber and its chemical N-modification at the fiber state for use as functional materials - Preparation of a fiber reactive chitosan derivative with enhanced microbial activity - Chromatographic separation of rare earths with complexane types of chemically modified chitosan - The effects of detergents on chitosan - Chitosan-alginate PEC films prepared from chitosan of different molecular weights - Enzymology of Chitin and Chitosan Biosynthesis and Degradation Enzymes of chitin metabolism for the design of antifungals - Enzymatic degradation of chitin by microorganisms - Kinetic behaviours of chitinase isozymes - An acidic chitinase from gizzards of broiler (Gallus gallus L.) - On the contribution of conserved acidic residues to catalytic activity of chitinase B from Serratia marcescens - Detection, isolation and preliminary characterisation of a new hyperthermophilic chitinase from the anaerobic archaebacterium Thermococcus chitonophagus - Biochemical and genetic engineering studies on chitinase A from Serratia marcescens - Induction of chitinase production by Serratia marcescens, using a synthetic N-acetylglucosamine derivative - Libraries of chito-oligosaccharides of mixed acetylation patterns and their interactions with chitinases - Approaches towards the design of new chitinase inhibitors - Allosamidin inhibits the fragmentation and autolysis of Penicillium chrysogenum - cDNA encoding chitinase in the midge, Chironomus tentans - Extraction and purification of chitosanase from Bacillus cereus - Substrate binding mechanism of chitosanase from Streptomyces sp. N174 - Chitosanase-catalyzed hydrolysis of 4-methylumbelliferyl ?-chitotrioside - A rust fungus turns chitin into chitosan upon plant tissue colonization to evade recognition by the host - Antibiotic kanosamine is an inhibitor of chitin biosynthesis in fungi - PCR amplification of chitin deacetylase genes - Amplification of antifungal effect of GlcN-6-P synthase and chitin synthase inhibitors - ?-N-Acetylhexosaminidases: two enzyme families, two mechanisms - Purification and characterisation of chitin deacetylase from Absidia orchidis - Effect of aluminium ion on hydrolysis reaction of carboxymethyl- and dihydroxypropyl-chitin with lysozyme - Structure and function relatioship of human N-acetyl-D-glucosamine 2-epimerase (renin binding protein) - Identification of active site residue(s)}, language = {en} } @book{OPUS4-27424, title = {Journal of the science of food and agriculture}, editor = {Schwenke, Klaus Dieter}, publisher = {Wiley-VCH}, address = {Chichester}, year = {1995}, language = {en} } @book{OPUS4-29390, title = {Chemical Physics}, editor = {Z{\"u}licke, Lutz}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, year = {1991}, language = {en} } @book{OPUS4-30767, title = {Advances in chitin science}, editor = {Struszczyk, Henryk and Peter, Martin G. and Domard, Alain and Pospieszny, Henryk}, year = {1996}, language = {en} } @article{OPUS4-10587, title = {DFT-GIAO-NBO and 13C NMR study of the delta-syn-axial effect in 2,4-disubstituted adamantanes}, issn = {0749-1581}, doi = {10.1002/Mrc.2333}, year = {2008}, abstract = {Six groups of diastereomeric 2,4-disubstituted adamantanes were studied with DFT-GIAO-NBO (natural orbital analysis) methods. The calculated 13C chemical shifts reproduce well the experimental data. It was found that among all diastereomers, those bearing substituents in -syn-axial positions showed the largest overall deshielding, i.e. the sum of all 13C chemical shifts [;;(13C)] was the greatest and also had the highest delocalization contribution to the molecular energy evaluated with NBO. The higher delocalization energy is proposed to be the origin of the deshielding -syn-axial effect}, language = {en} } @article{OPUS4-10769, title = {Synthesis and conformational analysis of phenyl-substituted 1,3,2-oxazaphosphino[4,3-a]- and 1,2,3- oxathiazino[4,3-a]isoquinolines}, year = {2008}, abstract = {Through the ring closures of tetrahydroisoquinoline 1,3-amino alcohols bearing a phenyl group in the side- chain, diastereomers of novel 1- or 2-phenyl-substituted 1,3,2-oxazaphosphino[4,3-a]isoquinoline 4-oxides, and 1,2,3- oxathiazino[4,3-a]isoquinoline 4-oxides and 4,4-dioxides were prepared. NMR analysis and DFT calculations on the prepared tetrahydroisoquinoline-condensed 1,2,3-heterocycles revealed that their conformational equilibria of cis1-trans-cis2 type are influenced by the relative configuration of P-4 in the 1,3,2-oxazaphosphinanes, and by the position of the phenyl group in the 1,2,3-oxathiazines.}, language = {en} }