@article{EbelBald2022, author = {Ebel, Kenny and Bald, Ilko}, title = {Low-energy (5-20 eV) electron-induced single and double strand breaks in well-defined DNA sequences}, series = {Journal of physical chemistry letters}, volume = {13}, journal = {Journal of physical chemistry letters}, number = {22}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.2c00684}, pages = {4871 -- 4876}, year = {2022}, abstract = {Ionizing radiation is used in cancer radiation therapy to effectively damage the DNA of tumors. The main damage is due to generation of highly reactive secondary species such as low-energy electrons (LEEs). The accurate quantification of DNA radiation damage of well-defined DNA target sequences in terms of absolute cross sections for LEE-induced DNA strand breaks is possible by the DNA origami technique; however, to date, it is possible only for DNA single strands. In the present work DNA double strand breaks in the DNA sequence 5 '-d(CAC)4/5 ' d(GTG)4 are compared with DNA single strand breaks in the oligonucleotides 5 '-d(CAC)4 and 5 '-d(GTG)4 upon irradiation with LEEs in the energy range from 5 to 20 eV. A maximum of strand break cross section was found around 7 and 10 eV independent of the DNA sequence, indicating that dissociative electron attachment is the underlying mechanism of strand breakage and confirming previous studies using plasmid DNA.}, language = {en} } @article{XuDongJieetal.2022, author = {Xu, Yaolin and Dong, Kang and Jie, Yulin and Adelhelm, Philipp and Chen, Yawei and Xu, Liang and Yu, Peiping and Kim, Junghwa and Kochovski, Zdravko and Yu, Zhilong and Li, Wanxia and LeBeau, James and Shao-Horn, Yang and Cao, Ruiguo and Jiao, Shuhong and Cheng, Tao and Manke, Ingo and Lu, Yan}, title = {Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives}, series = {Avanced energy materials}, volume = {12}, journal = {Avanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200398}, pages = {22}, year = {2022}, abstract = {In recent years, due to its great promise in boosting the energy density of lithium batteries for future energy storage, research on the Li metal anode, as an alternative to the graphite anode in Li-ion batteries, has gained significant momentum. However, the practical use of Li metal anodes has been plagued by unstable Li (re)deposition and poor cyclability. Although tremendous efforts have been devoted to the stabilization of Li metal anodes, the mechanisms of electrochemical (re-)deposition/dissolution of Li and solid-electrolyte-interphase (SEI) formation remain elusive. This article highlights the recent mechanistic understandings and observations of Li deposition/dissolution and SEI formation achieved from advanced characterization techniques and simulation methods, and discusses major limitations and open questions in these processes. In particular, the authors provide their perspectives on advanced and emerging/potential methods for obtaining new insights into these questions. In addition, they give an outlook into cutting-edge interdisciplinary research topics for Li metal anodes. It pushes beyond the current knowledge and is expected to accelerate development toward a more in-depth and comprehensive understanding, in order to guide future research on Li metal anodes toward practical application.}, language = {en} } @article{NingYuMeietal.2022, author = {Ning, Jiaoyi and Yu, Hongtao and Mei, Shilin and Sch{\"u}tze, Yannik and Risse, Sebastian and Kardjilov, Nikolay and Hilger, Andr{\´e} and Manke, Ingo and Bande, Annika and Ruiz, Victor G. and Dzubiella, Joachim and Meng, Hong and Lu, Yan}, title = {Constructing binder- and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries}, series = {ChemSusChem}, volume = {15}, journal = {ChemSusChem}, number = {14}, publisher = {Wiley}, address = {Weinheim}, issn = {1864-5631}, doi = {10.1002/cssc.202200434}, pages = {10}, year = {2022}, abstract = {Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g(-1) at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S\&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries.}, language = {en} } @article{NeusserSunTanetal.2022, author = {Neusser, David and Sun, Bowen and Tan, Wen Liang and Thomsen, Lars and Schultz, Thorsten and Perdigon-Toro, Lorena and Koch, Norbert and Shoaee, Safa and McNeill, Christopher R. and Neher, Dieter and Ludwigs, Sabine}, title = {Spectroelectrochemically determined energy levels of PM6:Y6 blends and their relevance to solar cell performance}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {10}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {32}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/d2tc01918c}, pages = {11565 -- 11578}, year = {2022}, abstract = {Recent advances in organic solar cell performance have been mainly driven forward by combining high-performance p-type donor-acceptor copolymers (e.g.PM6) and non-fullerene small molecule acceptors (e.g.Y6) as bulk-heterojunction layers. A general observation in such devices is that the device performance, e.g., the open-circuit voltage, is strongly dependent on the processing solvent. While the morphology is a typically named key parameter, the energetics of donor-acceptor blends are equally important, but less straightforward to access in the active multicomponent layer. Here, we propose to use spectral onsets during electrochemical cycling in a systematic spectroelectrochemical study of blend films to access the redox behavior and the frontier orbital energy levels of the individual compounds. Our study reveals that the highest occupied molecular orbital offset (Delta E-HOMO) in PM6:Y6 blends is similar to 0.3 eV, which is comparable to the binding energy of Y6 excitons and therefore implies a nearly zero driving force for the dissociation of Y6 excitons. Switching the PM6 orientation in the blend films from face-on to edge-on in bulk has only a minor influence on the positions of the energy levels, but shows significant differences in the open circuit voltage of the device. We explain this phenomenon by the different interfacial molecular orientations, which are known to affect the non-radiative decay rate of the charge-transfer state. We compare our results to ultraviolet photoelectron spectroscopy data, which shows distinct differences in the HOMO offsets in the PM6:Y6 blend compared to neat films. This highlights the necessity to measure the energy levels of the individual compounds in device-relevant blend films.}, language = {en} } @article{StefancuNanZhuetal.2022, author = {Stefancu, Andrei and Nan, Lin and Zhu, Li and Chis, Vasile and Bald, Ilko and Liu, Min and Leopold, Nicolae and Maier, Stefan A. and Cortes, Emiliano}, title = {Controlling plasmonic chemistry pathways through specific ion effects}, series = {Advanced optical materials}, volume = {10}, journal = {Advanced optical materials}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.202200397}, pages = {10}, year = {2022}, abstract = {Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry.}, language = {en} } @article{MichaelisAengenheisterTuchtenhagenetal.2022, author = {Michaelis, Vivien and Aengenheister, Leonie and Tuchtenhagen, Max and Rinklebe, J{\"o}rg and Ebert, Franziska and Schwerdtle, Tanja and Buerki-Thurnherr, Tina and Bornhorst, Julia}, title = {Differences and interactions in placental manganese and iron transfer across an in vitro model of human villous trophoblasts}, series = {International journal of molecular sciences}, volume = {23}, journal = {International journal of molecular sciences}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms23063296}, pages = {18}, year = {2022}, abstract = {Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes.}, language = {en} } @misc{BandeGonzalezKlamrothetal.2022, author = {Bande, Annika and Gonz{\´a}lez, Leticia and Klamroth, Tillmann and Tremblay, Jean Christophe}, title = {Theoretical chemistry and quantum dynamics at interfaces}, series = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, volume = {558}, journal = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0301-0104}, doi = {10.1016/j.chemphys.2022.111509}, pages = {3}, year = {2022}, language = {en} } @article{CrovettoKojdaYietal.2022, author = {Crovetto, Andrea and Kojda, Danny and Yi, Feng and Heinselman, Karen N. and LaVan, David A. and Habicht, Klaus and Unold, Thomas and Zakutayev, Andriy}, title = {Crystallize It before It diffuses}, series = {Journal of the american chemical society}, volume = {144}, journal = {Journal of the american chemical society}, number = {29}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.2c04868}, pages = {13334 -- 13343}, year = {2022}, abstract = {Numerous phosphorus-rich metal phosphides containing both P-P bonds and metal-P bonds are known from the solid-state chemistry literature. A method to grow these materials in thin-film form would be desirable, as thin films are required in many applications and they are an ideal platform for high-throughput studies. In addition, the high density and smooth surfaces achievable in thin films are a significant advantage for characterization of transport and optical properties. Despite these benefits, there is hardly any published work on even the simplest binary phosphorus-rich phosphide films. Here, we demonstrate growth of single-phase CuP2 films by a two-step process involving reactive sputtering of amorphous CuP2+x and rapid annealing in an inert atmosphere. At the crystallization temperature, CuP2 is thermodynamically unstable with respect to Cu3P and P-4. However, CuP2 can be stabilized if the amorphous precursors are mixed on the atomic scale and are sufficiently close to the desired composition (neither too P poor nor too P rich). Fast formation of polycrystalline CuP2, combined with a short annealing time, makes it possible to bypass the diffusion processes responsible for decomposition. We find that thin-film CuP2 is a 1.5 eV band gap semiconductor with interesting properties, such as a high optical absorption coefficient (above 10(5) cm(-1)), low thermal conductivity (1.1 W/(K m)), and composition-insensitive electrical conductivity (around 1 S/cm). We anticipate that our processing route can be extended to other phosphorus-rich phosphides that are still awaiting thin-film synthesis and will lead to a more complete understanding of these materials and of their potential applications.}, language = {en} } @article{TungMaringXuetal.2022, author = {Tung, Wing Tai and Maring, Janita A. and Xu, Xun and Liu, Yue and Becker, Matthias and Somesh, Dipthi Bachamanda and Klose, Kristin and Wang, Weiwei and Sun, Xianlei and Ullah, Imran and Kratz, Karl and Neffe, Axel T. and Stamm, Christof and Ma, Nan and Lendlein, Andreas}, title = {In vivo performance of a cell and factor free multifunctional fiber mesh modulating postinfarct myocardial remodeling}, series = {Advanced Functional Materials}, volume = {32}, journal = {Advanced Functional Materials}, number = {31}, publisher = {Wiley}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202110179}, pages = {17}, year = {2022}, abstract = {Guidance of postinfarct myocardial remodeling processes by an epicardial patch system may alleviate the consequences of ischemic heart disease. As macrophages are highly relevant in balancing immune response and regenerative processes their suitable instruction would ensure therapeutic success. A polymeric mesh capable of attracting and instructing monocytes by purely physical cues and accelerating implant degradation at the cell/implant interface is designed. In a murine model for myocardial infarction the meshes are compared to those either coated with extracellular matrix or loaded with induced cardiomyocyte progenitor cells. All implants promote macrophage infiltration and polarization in the epicardium, which is verified by in vitro experiments. 6 weeks post-MI, especially the implantation of the mesh attenuates left ventricular adverse remodeling processes as shown by reduced infarct size (14.7\% vs 28-32\%) and increased wall thickness (854 mu m vs 400-600 mu m), enhanced angiogenesis/arteriogenesis (more than 50\% increase compared to controls and other groups), and improved heart function (ejection fraction = 36.8\% compared to 12.7-31.3\%). Upscaling as well as process controls is comprehensively considered in the presented mesh fabrication scheme to warrant further progression from bench to bedside.}, language = {en} } @article{MeiSiebertXuetal.2022, author = {Mei, Shilin and Siebert, Andreas and Xu, Yaolin and Quan, Ting and Garcia-Diez, Raul and B{\"a}r, Marcus and H{\"a}rtel, Paul and Abendroth, Thomas and D{\"o}rfler, Susanne and Kaskel, Stefan and Lu, Yan}, title = {Large-Scale Synthesis of Nanostructured Carbon-Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium-Sulfur Pouch Cells}, series = {Batteries \& supercaps}, volume = {5}, journal = {Batteries \& supercaps}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2566-6223}, doi = {10.1002/batt.202100398}, pages = {11}, year = {2022}, abstract = {Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li-S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- \& mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C-Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAhg(-1) at 0.05 C, a high-capacity retention of 83.7\% after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5\% at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li-S pouch cells.}, language = {en} } @article{LepreHeskeNowakowskietal.2022, author = {Lepre, Enrico and Heske, Julian and Nowakowski, Michal and Scoppola, Ernesto and Zizak, Ivo and Heil, Tobias and K{\"u}hne, Thomas D. and Antonietti, Markus and Lopez-Salas, Nieves and Albero, Josep}, title = {Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid}, series = {Nano energy}, volume = {97}, journal = {Nano energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2211-2855}, doi = {10.1016/j.nanoen.2022.107191}, pages = {12}, year = {2022}, abstract = {Electrochemical reduction stands as an alternative to revalorize CO2. Among the different alternatives, Ni single atoms supported on carbonaceous materials are an appealing catalytic solution due to the low cost and versatility of the support and the optimal usage of Ni and its predicted selectivity and efficiency (ca. 100\% towards CO). Herein, we have used noble carbonaceous support derived from cytosine to load Ni subnanometric sites. The large heteroatom content of the support allows the stabilization of up to 11 wt\% of Ni without the formation of nanoparticles through a simple impregnation plus calcination approach, where nickel promotes the stabilization of C3NOx frameworks and the oxidative support promotes a high oxidation state of nickel. EXAFS analysis points at nickel single atoms or subnanometric clusters coordinated by oxygen in the material surface. Unlike the wellknown N-coordinated Ni single sites selectivity towards CO2 reduction, O-coordinated-Ni single sites (ca. 7 wt\% of Ni) reduced CO2 to CO, but subnanometric clusters (11 wt\% of Ni) foster the unprecedented formation of HCOOH with 27\% Faradaic efficiency at - 1.4 V. Larger Ni amounts ended up on the formation of NiO nanoparticles and almost 100\% selectivity towards hydrogen evolution.}, language = {en} } @article{PhamQuanMeietal.2022, author = {Pham, Duong Tung and Quan, Ting and Mei, Shilin and Lu, Yan}, title = {Colloidal metal sulfide nanoparticles for high performance electrochemical energy storage systems}, series = {Current opinion in green and sustainable chemistry}, volume = {34}, journal = {Current opinion in green and sustainable chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2452-2236}, doi = {10.1016/j.cogsc.2022.100596}, pages = {11}, year = {2022}, abstract = {Transition metal sulfides have emerged as excellent replacement candidates of traditional insertion electrode materials based on their conversion or alloying mechanisms, facilitating high specific capacity and rate ability. However, parasitic reactions such as massive volume change during the discharge/ charge processes, intermediate polysulfide dissolution, and passivating solid electrolyte interface formation have led to poor cyclability, hindering their feasibility and applicability in energy storage systems. Colloidal metal sulfide nanoparticles, a special class that integrates the intrinsic chemical properties of metal sulfides and their specified structural features, have fairly enlarged their contribution due to the synergistic effect. This review highlights the latest synthetic approaches based on colloidal process. Their corresponding electrochemical outcomes will also be discussed, which are thoroughly updated along with their insight scientific standpoints.}, language = {en} } @article{PessanhaPaschoalinoDerocoetal.2022, author = {Pessanha, Tatiana and Paschoalino, Waldemir J. and Deroco, Patricia B. and Kogikoski Junior, Sergio and Moraes, Ana C. M. de and Carvalho Castro de Silva, Cecilia de and Kubota, Lauro T.}, title = {Interfacial capacitance of graphene oxide films electrodes}, series = {Electroanalysis : an internatinal journal devoted to electroanalysis, sensors and bioelectronic devices}, volume = {34}, journal = {Electroanalysis : an internatinal journal devoted to electroanalysis, sensors and bioelectronic devices}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.202100220}, pages = {692 -- 700}, year = {2022}, abstract = {The understanding of bidimensional materials dynamics and its electrolyte interface equilibrium, such as graphene oxide (GO), is critical for the development of a capacitive biosensing platform. The interfacial capacitance (C-i) of graphene-based materials may be tuned by experimental conditions such as pH optimization and cation size playing key roles at the enhancement of their capacitive properties allowing their application as novel capacitive biosensors. Here we reported a systematic study of C-i of multilayer GO films in different aqueous electrolytes employing electrochemical impedance spectroscopy for the application in a capacitive detection system. We demonstrated that the presence of ionizable oxygen-containing functional groups within multilayer GO film favors the interactions and the accumulation of cations in the structure of the electrodes enhancing the GO C-i in aqueous solutions, where at pH 7.0 (the best condition) the C-i was 340 mu F mg(-1) at -0.01 V vs Ag/AgCl. We also established that the hydrated cation radius affects the mobility and interaction with GO functional groups and it plays a critical role in the Ci, as demonstrated in the presence of different cations Na+=640 mu F mg(-1), Li+=575 mu F mg(-1) and TMA(+)=477 mu F mg(-1). As a proof-of-concept, the capacitive behaviour of GO was explored as biosensing platform for standard streptavidin-biotin systems. For this system, the C-i varied linearly with the log of the concentration of the targeting analyte in the range from 10 pg mL(-1) to 100 ng mL(-1), showing the promising applicability of capacitive GO based sensors for label-free biosensing.}, language = {en} } @article{WangGeigerKreuzeretal.2022, author = {Wang, Peixi and Geiger, Christina and Kreuzer, Lucas and Widmann, Tobias and Reitenbach, Julija and Liang, Suzhe and Cubitt, Robert and Henschel, Cristiane and Laschewsky, Andr{\´e} and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Poly(sulfobetaine)-based diblock copolymer thin films in water/acetone atmosphere: modulation of water hydration and co-nonsolvency-triggered film contraction}, series = {Langmuir : the ACS journal of surfaces and colloids}, volume = {38}, journal = {Langmuir : the ACS journal of surfaces and colloids}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.2c00451}, pages = {6934 -- 6948}, year = {2022}, abstract = {The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied viaspectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (H2OorD2O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H2OorD2O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H2O is stronger than for D2O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H2O/acetone-d6 and D2O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, where as the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior.}, language = {en} } @article{KuntzeViljakkaTitovetal.2022, author = {Kuntze, Kim and Viljakka, Jani and Titov, Evgenii and Ahmed, Zafar and Kalenius, Elina and Saalfrank, Peter and Priimagi, Arri}, title = {Towards low-energy-light-driven bistable photoswitches}, series = {Photochemical \& photobiological sciences / European Society for Photobiology}, volume = {21}, journal = {Photochemical \& photobiological sciences / European Society for Photobiology}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1474-905X}, doi = {10.1007/s43630-021-00145-4}, pages = {159 -- 173}, year = {2022}, abstract = {Thermally stable photoswitches that are driven with low-energy light are rare, yet crucial for extending the applicability of photoresponsive molecules and materials towards, e.g., living systems. Combined ortho-fluorination and -amination couples high visible light absorptivity of o-aminoazobenzenes with the extraordinary bistability of o-fluoroazobenzenes. Herein, we report a library of easily accessible o-aminofluoroazobenzenes and establish structure-property relationships regarding spectral qualities, visible light isomerization efficiency and thermal stability of the cis-isomer with respect to the degree of o-substitution and choice of amino substituent. We rationalize the experimental results with quantum chemical calculations, revealing the nature of low-lying excited states and providing insight into thermal isomerization. The synthesized azobenzenes absorb at up to 600 nm and their thermal cis-lifetimes range from milliseconds to months. The most unique example can be driven from trans to cis with any wavelength from UV up to 595 nm, while still exhibiting a thermal cis-lifetime of 81 days.
[GRAPHICS]
.}, language = {en} } @article{XieXuWangetal.2022, author = {Xie, Dongjiu and Xu, Yaolin and Wang, Yonglei and Pan, Xuefeng and H{\"a}rk, Eneli and Kochovski, Zdravko and Eljarrat, Alberto and M{\"u}ller, Johannes and Koch, Christoph T. and Yuan, Jiayin and Lu, Yan}, title = {Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanoparticles as catalytic sulfur host for Li-S batteries}, series = {ACS nano}, volume = {16}, journal = {ACS nano}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.2c01992}, pages = {10554 -- 10565}, year = {2022}, abstract = {Poly(ionic liquid)s (PIL) are common precursors for heteroatom-doped carbon materials. Despite a relatively higher carbonization yield, the PIL-to-carbon conversion process faces challenges in preserving morphological and structural motifs on the nanoscale. Assisted by a thin polydopamine coating route and ion exchange, imidazoliumbased PIL nanovesicles were successfully applied in morphology-maintaining carbonization to prepare carbon composite nanocapsules. Extending this strategy further to their composites, we demonstrate the synthesis of carbon composite nanocapsules functionalized with iron nitride nanoparticles of an ultrafine, uniform size of 3-5 nm (termed "FexN@C "). Due to its unique nanostructure, the sulfur-loaded FexN@C electrode was tested to efficiently mitigate the notorious shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. The cavity of the carbon nanocapsules was spotted to better the loading content of sulfur. The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electronic conductivity and strong binding power to LiPSs. Benefiting from this well-crafted composite nanostructure, the constructed FexN@C/S cathode demonstrated a fairly high discharge capacity of 1085 mAh g(-1) at 0.5 C initially, and a remaining value of 930 mAh g(-1 )after 200 cycles. In addition, it exhibits an excellent rate capability with a high initial discharge capacity of 889.8 mAh g(-1) at 2 C. This facile PIL-to-nanocarbon synthetic approach is applicable for the exquisite design of complex hybrid carbon nanostructures with potential use in electrochemical energy storage and conversion.}, language = {en} } @article{PanSarhanKochovskietal.2022, author = {Pan, Xuefeng and Sarhan, Radwan Mohamed and Kochovski, Zdravko and Chen, Guosong and Taubert, Andreas and Mei, Shilin and Lu, Yan}, title = {Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, number = {18}, publisher = {RSC Publ. (Royal Society of Chemistry)}, address = {Cambridge}, issn = {2040-3372}, doi = {10.1039/d2nr01040b}, pages = {6888 -- 6901}, year = {2022}, abstract = {Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS 2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis.}, language = {en} } @article{ZhaoSarhanEljarratetal.2022, author = {Zhao, Yuhang and Sarhan, Radwan Mohamed and Eljarrat, Alberto and Kochovski, Zdravko and Koch, Christoph and Schmidt, Bernd and Koopman, Wouter-Willem Adriaan and Lu, Yan}, title = {Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance}, series = {ACS applied materials \& interfaces}, volume = {14}, journal = {ACS applied materials \& interfaces}, number = {15}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.2c00221}, pages = {17259 -- 17272}, year = {2022}, abstract = {Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60\% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10\% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.}, language = {en} } @article{FloydSongHapeshietal.2022, author = {Floyd, Thomas G. and Song, Ji-Inn and Hapeshi, Alexia and Laroque, Sophie and Hartlieb, Matthias and Perrier, Sebastien}, title = {Bottlebrush copolymers for gene delivery: influence of architecture, charge density, and backbone length on transfection efficiency}, series = {Journal of materials chemistry : B, materials for biology and medicine}, volume = {10}, journal = {Journal of materials chemistry : B, materials for biology and medicine}, number = {19}, publisher = {Royal Society of Chemistry}, address = {London [u.a.]}, issn = {2050-750X}, doi = {10.1039/d2tb00490a}, pages = {3696 -- 3704}, year = {2022}, abstract = {The influence of polymer architecture of polycations on their ability to transfect mammalian cells is probed. Polymer bottle brushes with grafts made from partially hydrolysed poly(2-ethyl-2-oxazoline) are used while varying the length of the polymer backbone as well as the degree of hydrolysis (cationic charge content). Polyplex formation is investigated via gel electrophoresis, dye-displacement and dynamic light scattering. Bottle brushes show a superior ability to complex pDNA when compared to linear copolymers. Also, nucleic acid release was found to be improved by a graft architecture. Polyplexes based on bottle brush copolymers showed an elongated shape in transmission electron microscopy images. The cytotoxicity against mammalian cells is drastically reduced when a graft architecture is used instead of linear copolymers. Moreover, the best-performing bottle brush copolymer showed a transfection ability comparable with that of linear poly(ethylenimine), the gold standard of polymeric transfection agents, which is used as positive control. In combination with their markedly lowered cytotoxicity, cationic bottle brush copolymers are therefore shown to be a highly promising class of gene delivery vectors.}, language = {en} } @article{AbbasiXuKhezrietal.2022, author = {Abbasi, Ali and Xu, Yaolin and Khezri, Ramin and Etesami, Mohammad and Lin, C. and Kheawhom, Soorathep and Lu, Yan}, title = {Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries}, series = {Materials Today Sustainability}, volume = {18}, journal = {Materials Today Sustainability}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2589-2347}, doi = {10.1016/j.mtsust.2022.100126}, pages = {17}, year = {2022}, abstract = {Zinc-air batteries (ZABs) are gaining popularity for a wide range of applications due to their high energy density, excellent safety, and environmental friendliness. A membrane/separator is a critical component of ZABs, with substantial implications for battery performance and stability, particularly in the case of a battery in solid state format, which has captured increased attention in recent years. In this review, recent advances as well as insight into the architecture of polymeric membrane/separators for ZABs including porous polymer separators (PPSs), gel polymer electrolytes (GPEs), solid polymer electrolytes (SPEs) and anion exchange membranes (AEMs) are discussed. The paper puts forward strategies to enhance stability, ionic conductivity, ionic selectivity, electrolyte storage capacity and mechanical properties for each type of polymeric membrane. In addition, the remaining major obstacles as well as the most potential avenues for future research are examined in detail.}, language = {en} } @article{MayerPicconiRobinsonetal.2022, author = {Mayer, Dennis and Picconi, David and Robinson, Matthew S. and G{\"u}hr, Markus}, title = {Experimental and theoretical gas-phase absorption spectra of thionated uracils}, series = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, volume = {558}, journal = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-0104}, doi = {10.1016/j.chemphys.2022.111500}, pages = {9}, year = {2022}, abstract = {We present a comparative study of the gas-phase UV spectra of uracil and its thionated counterparts (2-thiouracil, 4-thiouracil and 2,4-dithiouracil), closely supported by time-dependent density functional theory calculations to assign the transitions observed. We systematically discuss pure gas-phase spectra for the (thio)uracils in the range of 200-400 nm (similar to 3.2-6.4 eV), and examine the spectra of all four species with a single theoretical approach. We note that specific vibrational modelling is needed to accurately determine the spectra across the examined wavelength range, and systematically model the transitions that appear at wavelengths shorter than 250 nm. Additionally, we find in the cases of 2-thiouracil and 2,4-dithiouracil, that the gas-phase spectra deviate significantly from some previously published solution-phase spectra, especially those collected in basic environments.}, language = {en} } @article{IlicSchutjajewZhangetal.2022, author = {Ilic, Ivan and Schutjajew, Konstantin and Zhang, Wuyong and Oschatz, Martin}, title = {Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes}, series = {Carbon : an international journal sponsored by the American Carbon Society}, volume = {186}, journal = {Carbon : an international journal sponsored by the American Carbon Society}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0008-6223}, doi = {10.1016/j.carbon.2021.09.063}, pages = {55 -- 63}, year = {2022}, abstract = {Lithium-ion batteries have revolutionized battery technology. However, the scarcity of lithium in nature is driving the search for alternatives. For that reason, sodium-ion batteries have attracted increasing attention in recent years. The main obstacle to their development is the anode as, unlike for lithium-ion batteries, graphite cannot be used due to the inability to form stoichiometrically useful intercalation compounds with sodium. A promising candidate for sodium storage is hard carbon a form of nongraphitisable carbon, that can be synthesized from various precursor materials. Processing of hard carbons is often done by using mechanochemical treatments. Although it is generally accepted and often observed that they can influence the porosity of hard carbons, their effect on battery performance not well understood. Here, the changes in porosity occurring during ball milling are elucidated and related to the properties of hard carbons in sodium storage. Analysis by combined gas physisorption and small angle X-ray scattering shows that porosity changes during ball milling with a significant increase of the open porosity, unsuitable for reversible sodium storage, and decrease of the closed porosity, suitable for reversible sodium storage. While pristine hard carbon can store 58.5 mAh g(-1) in the closed pores, upon 5 h of mechanical treatment in a ball mill it can only store 35.5 mAh g(-1). The obtained results are furthermore pointing towards the disputed "intercalation-adsorption" mechanism.}, language = {en} } @article{GuptaPathakShrivastav2022, author = {Gupta, Banshi D. and Pathak, Anisha and Shrivastav, Anand}, title = {Optical Biomedical Diagnostics Using Lab-on-Fiber Technology}, series = {Photonics : open access journal}, volume = {9}, journal = {Photonics : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2304-6732}, doi = {10.3390/photonics9020086}, pages = {40}, year = {2022}, abstract = {Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted.}, language = {en} } @article{YueMelaniKirschetal.2022, author = {Yue, Yanhua and Melani, Giacomo and Kirsch, Harald and Paarmann, Alexander and Saalfrank, Peter and Campen, Richard Kramer and Tong, Yujin}, title = {Structure and Reactivity of a-Al2O3(0001) Surfaces: How Do Al-I and Gibbsite-like Terminations Interconvert?}, series = {The journal of physical chemistry / publ. weekly by the American Chemical Society. C, Energy, materials, and catalysis}, volume = {126}, journal = {The journal of physical chemistry / publ. weekly by the American Chemical Society. C, Energy, materials, and catalysis}, number = {31}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.2c03743}, pages = {13467 -- 13476}, year = {2022}, abstract = {The alpha-Al2O3(0001) surface has been extensively studied because of its significance in both fundamental research and application. Prior work suggests that in ultra-high-vacuum (UHV), in the absence of water, the so-called Al-I termination is thermodynamically favored, while in ambient, in contact with liquid water, a Gibbsite-like layer is created. While the view of the alpha- Al2O3(0001)/H2O(l) interface appears relatively clear in theory, experimental characterization of this system has resulted in estimates of surface acidity, i.e., isoelectric points, that differ by 4 pH units and surface structure that in some reports has non-hydrogen-bonded surface aluminol (Al-OH) groups and in others does not. In this study, we employed vibrational sum frequency spectroscopy (VSFS) and density functional theory (DFT) simulation to study the surface phonon modes of the differently terminated alpha-Al2O3(0001) surfaces in both UHV and ambient. We find that, on either water dosing of the Al-I in UHV or heat-induced dehydroxylation of the Gibbsite-like in ambient, the surfaces do not interconvert. This observation offers a new explanation for disagreements in prior work on the alpha-Al2O3(0001)/liquid water interface -different preparation methods may create surfaces that do not interconvert-and shows that the surface phonon spectral response offers a novel probe of interfacial hydrogen bonding structure.}, language = {en} } @article{TarazonaLizcanoMachatschekBalcuchoetal.2022, author = {Tarazona Lizcano, Natalia Andrea and Machatschek, Rainhard Gabriel and Balcucho, Jennifer and Castro-Mayorga, Jinneth Lorena and Saldarriaga, Juan Francisco and Lendlein, Andreas}, title = {Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept}, series = {MRS energy \& sustainability : science \& technology \& socio-economics \& policy}, volume = {9}, journal = {MRS energy \& sustainability : science \& technology \& socio-economics \& policy}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2329-2229}, doi = {10.1557/s43581-021-00015-7}, pages = {28 -- 34}, year = {2022}, abstract = {The production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination of properties/functions can enhance the sustainability of plastics ranging from material design to waste management. We focus on tools to measure and reduce the negative impacts of plastics on the environment throughout their life cycle, the use of renewable sources for their synthesis, the design of biodegradable and/or recyclable materials, and the use of biotechnological strategies for enzymatic recycling of plastics that fits into a circular bioeconomy. Finally, we discuss future applications for sustainable plastics with the aim to achieve the SDGs through international cooperation.
Leading-edge polymer-based materials for consumer and advanced applications are necessary to achieve sustainable development at a global scale. It is essential to understand how sustainability can be incorporated in these materials via green chemistry, the integration of bio-based building blocks from biorefineries, circular bioeconomy strategies, and combined smart and functional capabilities.}, language = {en} } @article{MullanMaschioSaalfranketal.2022, author = {Mullan, Thomas and Maschio, Lorenzo and Saalfrank, Peter and Usvyat, Denis}, title = {Reaction barriers on non-conducting surfaces beyond periodic local MP2}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {156}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {7}, publisher = {AIP Publishing}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0082805}, pages = {11}, year = {2022}, abstract = {The quest for "chemical accuracy" is becoming more and more demanded in the field of structure and kinetics of molecules at solid surfaces. In this paper, as an example, we focus on the barrier for hydrogen diffusion on a alpha-Al2O3 (0001) surface, aiming for a couple cluster singles, doubles, and perturbative triples [CCSD(T)]-level benchmark. We employ the density functional theory (DFT) optimized minimum and transition state structures reported by Heiden, Usvyat, and Saalfrank [J. Phys. Chem. C 123, 6675 (2019)]. The barrier is first evaluated at the periodic Hartree-Fock and local Moller-Plesset second-order perturbation (MP2) level of theory. The possible sources of errors are then analyzed, which includes basis set incompleteness error, frozen core, density fitting, local approximation errors, as well as the MP2 method error. Using periodic and embedded fragment models, corrections to these errors are evaluated. In particular, two corrections are found to be non-negligible (both from the chemical accuracy perspective and at the scale of the barrier value of 0.72 eV): the correction to the frozen core-approximation of 0.06 eV and the CCSD(T) correction of 0.07 eV. Our correlated wave function results are compared to barriers obtained from DFT. Among the tested DFT functionals, the best performing for this barrier is B3LYP-D3.}, language = {en} } @article{HoffmannMachatschekLendlein2022, author = {Hoffmann, Falk and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Analytical model and Monte Carlo simulations of polymer degradation with improved chain cut statistics}, series = {Journal of materials research : JMR}, volume = {37}, journal = {Journal of materials research : JMR}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {0884-2914}, doi = {10.1557/s43578-022-00495-4}, pages = {1093 -- 1101}, year = {2022}, abstract = {The degradation of polymers is described by mathematical models based on bond cleavage statistics including the decreasing probability of chain cuts with decreasing average chain length. We derive equations for the degradation of chains under a random chain cut and a chain end cut mechanism, which are compared to existing models. The results are used to predict the influence of internal molecular parameters. It is shown that both chain cut mechanisms lead to a similar shape of the mass or molecular mass loss curve. A characteristic time is derived, which can be used to extract the maximum length of soluble fragments l of the polymer. We show that the complete description is needed to extract the degradation rate constant k from the molecular mass loss curve and that l can be used to design polymers that lose less mechanical stability before entering the mass loss phase.}, language = {en} } @article{LauGossenLendleinetal.2022, author = {Lau, Skadi and Gossen, Manfred and Lendlein, Andreas and Jung, Friedrich}, title = {Differential sensitivity of assays for determining vein endothelial cell senescence}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {81}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {3}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-211294}, pages = {191 -- 203}, year = {2022}, abstract = {In vivo endothelialization of polymer-based cardiovascular implant materials is a promising strategy to reduce the risk of platelet adherence and the subsequent thrombus formation and implant failure. However, endothelial cells from elderly patients are likely to exhibit a senescent phenotype that may counteract endothelialization. The senescence status of cells should therefore be investigated prior to implantation of devices designed to be integrated in the blood vessel wall. Here, human umbilical vein endothelial cells (HUVEC) were cultivated up to passage (P) 4, 10 and 26/27 to determine the population doubling time and the senescence status by four different methods. Determination of the senescence-associated beta-galactosidase activity (SA-beta-Gal) was carried out by colorimetric staining and microscopy (i), as well as by photometric quantification (ii), and the expression of senescence-associated nuclear proteins p16 and p21 as well as the proliferation marker Ki67 was assessed by immunostaining (iii), and by flow cytometry (iv). The population doubling time of P27-cells was remarkably greater (103 +/- 65 h) compared to P4-cells (24 +/- 3 h) and P10-cell (37 +/- 15 h). Among the four different methods tested, the photometric SA-beta-Gal activity assay and the flow cytometric determination of p16 and Ki67 were most effective in discriminating P27-cells from P4- and P10-cells. These methods combined with functional endothelial cell analyses might aid predictions on the performance of implant endothelialization in vivo.}, language = {en} } @article{TartivelBlockiBrauneetal.2022, author = {Tartivel, Lucile and Blocki, Anna M. and Braune, Steffen and Jung, Friedrich and Behl, Marc and Lendlein, Andreas}, title = {An Inverse shape-memory hydrogel scaffold switching upon cooling in a tissue-tolerated temperature range}, series = {Advanced materials interfaces}, volume = {9}, journal = {Advanced materials interfaces}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202101588}, pages = {9}, year = {2022}, abstract = {Tissue reconstruction has an unmet need for soft active scaffolds that enable gentle loading with regeneration-directing bioactive components by soaking up but also provide macroscopic dimensional stability. Here microporous hydrogels capable of an inverse shape-memory effect (iSME) are described, which in contrast to classical shape-memory polymers (SMPs) recover their permanent shape upon cooling. These hydrogels are designed as covalently photo cross-linked polymer networks with oligo(ethylene glycol)-oligo(propylene glycol)-oligo(ethylene glycol) (OEG-OPG-OEG) segments. When heated after deformation, the OEG-OPG-OEG segments form micelles fixing the temporary shape. Upon cooling, the micelles dissociate again, the deformation is reversed and the permanent shape is obtained. Applicability of this iSME is demonstrated by the gentle loading of platelet-rich plasma (PRP) without causing any platelet activation during this process. PRP is highly bioactive and is widely acknowledged for its regenerative effects. Hence, the microporous inverse shape-memory hydrogel (iSMH) with a cooling induced pore-size effect represents a promising candidate scaffold for tissue regeneration for potential usage in minimally invasive surgery applications.}, language = {en} } @article{TangSmaczniakTepperetal.2022, author = {Tang, Jo Sing Julia and Smaczniak, Aline Debrassi and Tepper, Lucas and Rosencrantz, Sophia and Aleksanyan, Mina and D{\"a}hne, Lars and Rosencrantz, Ruben R.}, title = {Glycopolymer based LbL multilayer thin films with embedded liposomes}, series = {Macromolecular bioscience}, volume = {22}, journal = {Macromolecular bioscience}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.202100461}, pages = {9}, year = {2022}, abstract = {Layer-by-layer (LbL) self-assembly emerged as an efficient technique for fabricating coating systems for, e.g., drug delivery systems with great versatility and control. In this work, protecting group free and aqueous-based syntheses of bioinspired glycopolymer electrolytes aredescribed. Thin films of the glycopolymers are fabricated by LbL self-assembly and function as scaffolds for liposomes, which potentially can encapsulate active substances. The adsorbed mass, pH stability, and integrity of glycopolymer coatings as well as the embedded liposomes are investigated via whispering gallery mode (WGM) technology and quartz crystal microbalance with dissipation (QCM-D) monitoring , which enable label-free characterization. Glycopolymer thin films, with and without liposomes, are stable in the physiological pH range. QCM-D measurements verify the integrity of lipid vesicles. Thus, the fabrication of glycopolymer-based surface coatings with embedded and intact liposomes is presented.}, language = {en} } @article{AbdouAlonsoBrunetal.2022, author = {Abdou, Nicole and Alonso, Bruno and Brun, Nicolas and Landois, Perine and Taubert, Andreas and Hesemann, Peter and Mehdi, Ahmad}, title = {Ionic guest in ionic host}, series = {Materials chemistry frontiers}, volume = {6}, journal = {Materials chemistry frontiers}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2052-1537}, doi = {10.1039/d2qm00021k}, pages = {939 -- 947}, year = {2022}, abstract = {Ionosilica ionogels, i.e. composites consisting of an ionic liquid (IL) guest confined in an ionosilica host matrix, were synthesized via a non-hydrolytic sol-gel procedure from a tris-trialcoxysilylated amine precursor using the IL [BMIM]NTf2 as solvent. Various ionosilica ionogels were prepared starting from variable volumes of IL in the presence of formic acid. The resulting brittle and nearly colourless monoliths are composed of different amounts of IL guests confined in an ionosilica host as evidenced via thermogravimetric analysis, FT-IR, and C-13 CP-MAS solid-state NMR spectroscopy. In the following, we focused on confinement effects between the ionic host and guest. Special host-guest interactions between the IL guest and the ionosilica host were evidenced by H-1 solid-state NMR, Raman spectroscopy, and broadband dielectric spectroscopy (BDS) measurements. The three techniques indicate a strongly reduced ion mobility in the ionosilica ionogel composites containing small volume fractions of confined IL, compared to conventional silica-based ionogels. We conclude that the ionic ionosilica host stabilizes an IL layer on the host surface; this then results in a strongly reduced ion mobility compared to conventional silica hosts. The ion mobility progressively increases for systems containing higher volume fractions of IL and finally reaches the values observed in conventional silica based ionogels. These results therefore point towards strong interactions and confinement effects between the ionic host and the ionic guest on the ionosilica surface. Furthermore, this approach allows confining high volume fractions of IL into self-standing monoliths while preserving high ionic conductivity. These effects may be of interest in domains where IL phases must be anchored on solid supports to avoid leaching or IL spilling, e.g., in catalysis, in gas separation/sequestration devices or for the elaboration of solid electrolytes for (lithium-ion) batteries and supercapacitors.}, language = {en} } @article{BapolisiKielbBekiretal.2022, author = {Bapolisi, Alain Murhimalika and Kielb, Patrycja and Bekir, Marek and Lehnen, Anne-Catherine and Radon, Christin and Laroque, Sophie and Wendler, Petra and M{\"u}ller-Werkmeister, Henrike and Hartlieb, Matthias}, title = {Antimicrobial polymers of linear and bottlebrush architecture}, series = {Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation}, volume = {43}, journal = {Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3927}, doi = {10.1002/marc.202200288}, pages = {14}, year = {2022}, abstract = {Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs.}, language = {en} } @article{KimKimParketal.2022, author = {Kim, Jiyong and Kim, Yohan and Park, Kyoungwon and Boeffel, Christine and Choi, Hyung-Seok and Taubert, Andreas and Wedel, Armin}, title = {Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis}, series = {Small : nano micro}, journal = {Small : nano micro}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.202203093}, pages = {11}, year = {2022}, abstract = {The lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol, is demonstrated. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanethiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bind on the incomplete QD surface. These systematic chemical analyses, such as thermogravimetric analysis-mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD-LEDs). It is believed that this better understanding can lead to industrially feasible QD-LEDs.}, language = {en} } @article{DoeringGrigorievTapioetal.2022, author = {Doering, Ulrike and Grigoriev, Dmitry and Tapio, Kosti and Bald, Ilko and B{\"o}ker, Alexander}, title = {Synthesis of nanostructured protein-mineral-microcapsules by sonication}, series = {Soft matter}, volume = {18}, journal = {Soft matter}, number = {13}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1744-6848}, doi = {10.1039/d1sm01638e}, pages = {2558 -- 2568}, year = {2022}, abstract = {We propose a simple and eco-friendly method for the formation of composite protein-mineral-microcapsules induced by ultrasound treatment. Protein- and nanoparticle-stabilized oil-in-water (O/W) emulsions loaded with different oils are prepared using high-intensity ultrasound. The formation of thin composite mineral proteinaceous shells is realized with various types of nanoparticles, which are pre-modified with Bovine Serum Albumin (BSA) and subsequently characterized by EDX, TGA, zeta potential measurements and Raman spectroscopy. Cryo-SEM and EDX mapping visualizations show the homogeneous distribution of the densely packed nanoparticles in the capsule shell. In contrast to the results reported in our previous paper,(1) the shell of those nanostructured composite microcapsules is not cross-linked by the intermolecular disulfide bonds between BSA molecules. Instead, a Pickering-Emulsion formation takes place because of the amphiphilicity-driven spontaneous attachment of the BSA-modified nanoparticles at the oil/water interface. Using colloidal particles for the formation of the shell of the microcapsules, in our case silica, hydroxyapatite and calcium carbonate nanoparticles, is promising for the creation of new functional materials. The nanoparticulate building blocks of the composite shell with different chemical, physical or morphological properties can contribute to additional, sometimes even multiple, features of the resulting capsules. Microcapsules with shells of densely packed nanoparticles could find interesting applications in pharmaceutical science, cosmetics or in food technology.}, language = {en} } @article{YangGhoshRoeseretal.2022, author = {Yang, Jin and Ghosh, Samrat and Roeser, J{\´e}r{\^o}me and Acharjya, Amitava and Penschke, Christopher and Tsutsui, Yusuke and Rabeah, Jabor and Wang, Tianyi and Tameu, Simon Yves Djoko and Ye, Meng-Yang and Gr{\"u}neberg, Julia and Li, Shuang and Li, Changxia and Schomaecker, Reinhard and Van de Krol, Roel and Seki, Shu and Saalfrank, Peter and Thomas, Arne}, title = {Constitutional isomerism of the linkages in donor-acceptor covalent organic frameworks and its impact on photocatalysis}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {[London]}, issn = {2041-1723}, doi = {10.1038/s41467-022-33875-9}, pages = {10}, year = {2022}, abstract = {When new covalent organic frameworks (COFs) are designed, the main efforts are typically focused on selecting specific building blocks with certain geometries and properties to control the structure and function of the final COFs. The nature of the linkage (imine, boroxine, vinyl, etc.) between these building blocks naturally also defines their properties. However, besides the linkage type, the orientation, i.e., the constitutional isomerism of these linkages, has rarely been considered so far as an essential aspect. In this work, three pairs of constitutionally isomeric imine-linked donor-acceptor (D-A) COFs are synthesized, which are different in the orientation of the imine bonds (D-C=N-A (DCNA) and D-N=C-A (DNCA)). The constitutional isomers show substantial differences in their photophysical properties and consequently in their photocatalytic performance. Indeed, all DCNA COFs show enhanced photocatalytic H2 evolution performance than the corresponding DNCA COFs. Besides the imine COFs shown here, it can be concluded that the proposed concept of constitutional isomerism of linkages in COFs is quite universal and should be considered when designing and tuning the properties of COFs.}, language = {en} } @article{ZhangLiuMachatscheketal.2022, author = {Zhang, Shanshan and Liu, Yue and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Ultrathin collagen type I films formed at the air-water interface}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {7}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {4}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00160-8}, pages = {56 -- 62}, year = {2022}, abstract = {Collagen-based biomaterials with oriented fibrils have shown great application potential in medicine. However, it is still challenging to control the type I collagen fibrillogenesis in ultrathin films. Here, we report an approach to produce cohesive and well-organized type I collagen ultrathin films of about 10 nm thickness using the Langmuir-Blodgett technique. Ellipsometry, rheology, and Brewster angle microscopy are applied to investigate in situ how the molecules behave at the air-water interface, both at room temperature and 37 degrees C. The interfacial storage modulus observed at room temperature vanishes upon heating, indicating the existence and disappearance of the network structure in the protein nanosheet. The films were spanning over holes as large as 1 mm diameter when transferred at room temperature, proving the strong cohesive interactions. A highly aligned and fibrillar structure was observed by atomic force microscopy (AFM) and optical microscopy.}, language = {en} } @article{RoyMukherjeeMondaletal.2022, author = {Roy, Parna and Mukherjee, Arpita and Mondal, Pritha and Bhattacharyya, Biswajit and Narayan, Awadhesh and Pandey, Anshu}, title = {Electronic structure and spectroscopy of I-III-VI2 nanocrystals}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {126}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.1c10922}, pages = {7364 -- 7373}, year = {2022}, abstract = {I-III-VI2 semiconductor nanocrystals have been applied to a host of energy conversion devices with great success. Large scale implementation of device concepts based on these materials has, however, been somewhat stymied by the strong role of defects in determining the optoelectronic characteristics of these materials. Here we present a perspective view of the role of electronic structure and defects on the physical properties, particularly the spectroscopy, of this family of materials. Applications of these materials are further discussed in this context.}, language = {en} } @article{MadaniAnghileriHeydenreichetal.2022, author = {Madani, Amiera and Anghileri, Lucia and Heydenreich, Matthias and M{\"o}ller, Heiko Michael and Pieber, Bartholom{\"a}us}, title = {Benzylic fluorination induced by a charge-transfer complex with a solvent-dependent selectivity switch}, series = {Organic letters / publ. by the American Chemical Society}, volume = {24}, journal = {Organic letters / publ. by the American Chemical Society}, number = {29}, publisher = {American Chemical Society}, address = {Washington}, issn = {1523-7060}, doi = {10.1021/acs.orglett.2c02050}, pages = {5376 -- 5380}, year = {2022}, abstract = {We present a divergent strategy for the fluorination of phenylacetic acid derivatives that is induced by a charge-transfer complex between Selectfluor and 4-(dimethylamino)pyridine. A comprehensive investigation of the conditions revealed a critical role of the solvent on the reaction outcome. In the presence of water, decarboxylative fluorination through a single-electron oxidation is dominant. Non-aqueous conditions result in the clean formation of alpha-fluoro-alpha-arylcarboxylic acids.}, language = {en} } @article{MazareiBarker2022, author = {Mazarei, Elham and Barker, John R.}, title = {CH2 + O-2}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp04372b}, pages = {914 -- 927}, year = {2022}, abstract = {The singlet and triplet potential surfaces for the title reaction were investigated using the CBS-QB3 level of theory. The wave functions for some species exhibited multireference character and required the CASPT2/6-31+G(d,p) and CASPT2/aug-cc-pVTZ levels of theory to obtain accurate relative energies. A Natural Bond Orbital Analysis showed that triplet (CH2OO)-C-3 (the simplest Criegee intermediate) and (CH2O2)-C-3 (dioxirane) have mostly polar biradical character, while singlet (CH2OO)-C-1 has some zwitterionic character and a planar structure. Canonical variational transition state theory (CVTST) and master equation simulations were used to analyze the reaction system. CVTST predicts that the rate constant for reaction of (CH2)-C-1 + O-3(2) is more than ten times as fast as the reaction of (CH2)-C-3 ((XB1)-B-3) + O-3(2) and the ratio remains almost independent of temperature from 900 K to 3000 K. The master equation simulations predict that at low pressures the (CH2O)-C-1 + O-3 product set is dominant at all temperatures and the primary yield of OH radicals is negligible below 600 K, due to competition with other primary reactions in this complex system.}, language = {en} } @article{SchuermannTitovEbeletal.2022, author = {Sch{\"u}rmann, Robin and Titov, Evgenii and Ebel, Kenny and Kogikoski Junior, Sergio and Mostafa, Amr and Saalfrank, Peter and Milosavljević, Aleksandar R. and Bald, Ilko}, title = {The electronic structure of the metal-organic interface of isolated ligand coated gold nanoparticles}, series = {Nanoscale Advances}, volume = {4}, journal = {Nanoscale Advances}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2516-0230}, doi = {10.1039/d1na00737h}, pages = {1599 -- 1607}, year = {2022}, abstract = {Light induced electron transfer reactions of molecules on the surface of noble metal nanoparticles (NPs) depend significantly on the electronic properties of the metal-organic interface. Hybridized metal-molecule states and dipoles at the interface alter the work function and facilitate or hinder electron transfer between the NPs and ligand. X-ray photoelectron spectroscopy (XPS) measurements of isolated AuNPs coated with thiolated ligands in a vacuum have been performed as a function of photon energy, and the depth dependent information of the metal-organic interface has been obtained. The role of surface dipoles in the XPS measurements of isolated ligand coated NPs is discussed and the binding energy of the Au 4f states is shifted by around 0.8 eV in the outer atomic layers of 4-nitrothiophenol coated AuNPs, facilitating electron transport towards the molecules. Moreover, the influence of the interface dipole depends significantly on the adsorbed ligand molecules. The present study paves the way towards the engineering of the electronic properties of the nanoparticle surface, which is of utmost importance for the application of plasmonic nanoparticles in the fields of heterogeneous catalysis and solar energy conversion.}, language = {en} } @article{LiSpangenbergSchicksetal.2022, author = {Li, Zhen and Spangenberg, Erik and Schicks, Judith Maria and Kempka, Thomas}, title = {Numerical simulation of hydrate formation in the LArge-Scale Reservoir Simulator (LARS)}, series = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, volume = {15}, journal = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en15061974}, pages = {27}, year = {2022}, abstract = {The LArge-scale Reservoir Simulator (LARS) has been previously developed to study hydrate dissociation in hydrate-bearing systems under in-situ conditions. In the present study, a numerical framework of equations of state describing hydrate formation at equilibrium conditions has been elaborated and integrated with a numerical flow and transport simulator to investigate a multi-stage hydrate formation experiment undertaken in LARS. A verification of the implemented modeling framework has been carried out by benchmarking it against another established numerical code. Three-dimensional (3D) model calibration has been performed based on laboratory data available from temperature sensors, fluid sampling, and electrical resistivity tomography. The simulation results demonstrate that temperature profiles, spatial hydrate distribution, and bulk hydrate saturation are consistent with the observations. Furthermore, our numerical framework can be applied to calibrate geophysical measurements, optimize post-processing workflows for monitoring data, improve the design of hydrate formation experiments, and investigate the temporal evolution of sub-permafrost methane hydrate reservoirs.}, language = {en} } @article{Goswami2022, author = {Goswami, Koushik}, title = {Inertial particle under active fluctuations}, series = {Physical review E, Statistical, nonlinear, and soft matter physics}, volume = {105}, journal = {Physical review E, Statistical, nonlinear, and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.044123}, pages = {13}, year = {2022}, abstract = {We study the underdamped motion of a passive particle in an active environment. Using the phase space path integral method we find the probability distribution function of position and velocity for a free and a harmonically bound particle. The environment is characterized by an active noise which is described as the Ornstein-Uhlenbeck process (OUP). Taking two similar, yet slightly different OUP models, it is shown how inertia along with other relevant parameters affect the dynamics of the particle. Further we investigate the work fluctuations of a harmonically trapped particle by considering the trap center being pulled at a constant speed. Finally, the fluctuation theorem of work is validated with an effective temperature in the steady-state limit.}, language = {en} } @article{XieJouiniMeietal.2022, author = {Xie, Dongjiu and Jouini, Oumeima and Mei, Shilin and Quan, Ting and Xu, Yaolin and Kochovski, Zdravko and Lu, Yan}, title = {Spherical polyelectrolyte brushes templated hollow C@MnO nanospheres as sulfur host materials for Li-S batteries}, series = {ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More}, volume = {8}, journal = {ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2199-692X}, doi = {10.1002/cnma.202100455}, pages = {8}, year = {2022}, abstract = {Li-S battery has been considered as the next-generation energy storage device, which still suffers from the shuttle effect of lithium polysulfides (LiPSs). In this work, mesoporous hollow carbon-coated MnO nanospheres (C@MnO) have been designed and synthesized using spherical polyelectrolyte brushes (SPB) as template, KMnO4 as MnO precursor, and polydopamine as carbon source to improve the electrochemical performance of Li-S battery. The hollow C@MnO nanospheres enable the combination of physical confinement and chemical adsorption of the LiPSs. The thin carbon coating layer can provide good electrical conductivity and additional physical confinement to polysulfides. Moreover, the encapsulated MnO inside the carbon shell exhibits strong chemical adsorption to polysulfides. The constructed C@MnO/S cathode shows the discharge capacity of 1026 mAh g(-1) at 0.1 C with 79\% capacity retention after 80 cycles. The synthesized hollow C@MnO nanoparticles can work as highly efficient sulfur host materials, providing an effective solution to suppress the shuttle effect in Li-S battery.}, language = {en} } @article{FischerWertherBouaklineetal.2022, author = {Fischer, Eric Wolfgang and Werther, Michael and Bouakline, Foudhil and Grossmann, Frank and Saalfrank, Peter}, title = {Non-Markovian vibrational relaxation dynamics at surfaces}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {156}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {21}, publisher = {AIP Publishing}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0092836}, pages = {16}, year = {2022}, abstract = {Vibrational dynamics of adsorbates near surfaces plays both an important role for applied surface science and as a model lab for studying fundamental problems of open quantum systems. We employ a previously developed model for the relaxation of a D-Si-Si bending mode at a D:Si(100)-(2 x 1) surface, induced by a "bath " of more than 2000 phonon modes [Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], to extend previous work along various directions. First, we use a Hierarchical Effective Mode (HEM) model [Fischer et al., J. Chem. Phys. 153, 064704 (2020)] to study relaxation of higher excited vibrational states than hitherto done by solving a high-dimensional system-bath time-dependent Schrodinger equation (TDSE). In the HEM approach, (many) real bath modes are replaced by (much less) effective bath modes. Accordingly, we are able to examine scaling laws for vibrational relaxation lifetimes for a realistic surface science problem. Second, we compare the performance of the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) approach with that of the recently developed coherent-state-based multi-Davydov-D2 Ansatz [Zhou et al., J. Chem. Phys. 143, 014113 (2015)]. Both approaches work well, with some computational advantages for the latter in the presented context. Third, we apply open-system density matrix theory in comparison with basically "exact " solutions of the multi-mode TDSEs. Specifically, we use an open-system Liouville-von Neumann (LvN) equation treating vibration-phonon coupling as Markovian dissipation in Lindblad form to quantify effects beyond the Born-Markov approximation. Published under an exclusive license by AIP Publishing.}, language = {en} } @article{CheaNguyenRosencrantz2022, author = {Chea, Sany and Nguyen, Khac Toan and Rosencrantz, Ruben R.}, title = {Microwave-Assisted Synthesis of 5 '-O-methacryloylcytidine Using the Immobilized Lipase Novozym 435}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules27134112}, pages = {11}, year = {2022}, abstract = {Nucleobase building blocks have been demonstrated to be strong candidates when it comes to DNA/RNA-like materials by benefiting from hydrogen bond interactions as physical properties. Modifying at the 5 ' position is the simplest way to develop nucleobase-based structures by transesterification using the lipase Novozym 435. Herein, we describe the optimization of the lipase-catalyzed synthesis of the monomer 5 '-O-methacryloylcytidine with the assistance of microwave irradiation. Variable reaction parameters, such as enzyme concentration, molar ratio of the substrate, reaction temperature and reaction time, were investigated to find the optimum reaction condition in terms of obtaining the highest yield.}, language = {en} } @article{BalischewskiBhattacharyyaSperlichetal.2022, author = {Balischewski, Christian and Bhattacharyya, Biswajit and Sperlich, Eric and G{\"u}nter, Christina and Beqiraj, Alkit and Klamroth, Tillmann and Behrens, Karsten and Mies, Stefan and Kelling, Alexandra and Lubahn, Susanne and Holtzheimer, Lea and Nitschke, Anne and Taubert, Andreas}, title = {Tetrahalidometallate(II) ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {28}, journal = {Chemistry - a European journal}, number = {64}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3765}, doi = {10.1002/chem.202201068}, pages = {13}, year = {2022}, abstract = {Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.}, language = {en} } @article{SandmannMuenzbergBresseletal.2022, author = {Sandmann, Michael and M{\"u}nzberg, Marvin and Bressel, Lena and Reich, Oliver and Hass, Roland}, title = {Inline monitoring of high cell density cultivation of Scenedesmus rubescens in a mesh ultra-thin layer photobioreactor by photon density wave spectroscopy}, series = {BMC Research Notes / Biomed Central}, volume = {15}, journal = {BMC Research Notes / Biomed Central}, number = {1}, publisher = {Biomed Central (London)}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-022-05943-2}, pages = {7}, year = {2022}, abstract = {Objective Due to multiple light scattering that occurs inside and between cells, quantitative optical spectroscopy in turbid biological suspensions is still a major challenge. This includes also optical inline determination of biomass in bioprocessing. Photon Density Wave (PDW) spectroscopy, a technique based on multiple light scattering, enables the independent and absolute determination of optical key parameters of concentrated cell suspensions, which allow to determine biomass during cultivation. Results A unique reactor type, called "mesh ultra-thin layer photobioreactor" was used to create a highly concentrated algal suspension. PDW spectroscopy measurements were carried out continuously in the reactor without any need of sampling or sample preparation, over 3 weeks, and with 10-min time resolution. Conventional dry matter content and coulter counter measurements have been employed as established offline reference analysis. The PBR allowed peak cell dry weight (CDW) of 33.4 g L-1. It is shown that the reduced scattering coefficient determined by PDW spectroscopy is strongly correlated with the biomass concentration in suspension and is thus suitable for process understanding. The reactor in combination with the fiber-optical measurement approach will lead to a better process management.}, language = {en} } @article{SchuermannNagelJuergensenetal.2022, author = {Sch{\"u}rmann, Robin and Nagel, Alessandro and Juergensen, Sabrina and Pathak, Anisha and Reich, Stephanie and Pacholski, Claudia and Bald, Ilko}, title = {Microscopic understanding of reaction rates observed in plasmon chemistry of nanoparticle-ligand systems}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {126}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.2c00278}, pages = {5333 -- 5342}, year = {2022}, abstract = {Surface-enhanced Raman scattering (SERS) is an effective and widely used technique to study chemical reactions induced or catalyzed by plasmonic substrates, since the experimental setup allows us to trigger and track the reaction simultaneously and identify the products. However, on substrates with plasmonic hotspots, the total signal mainly originates from these nanoscopic volumes with high reactivity and the information about the overall consumption remains obscure in SERS measurements. This has important implications; for example, the apparent reaction order in SERS measurements does not correlate with the real reaction order, whereas the apparent reaction rates are proportional to the real reaction rates as demonstrated by finite-difference time-domain (FDTD) simulations. We determined the electric field enhancement distribution of a gold nanoparticle (AuNP) monolayer and calculated the SERS intensities in light-driven reactions in an adsorbed self-assembled molecular monolayer on the AuNP surface. Accordingly, even if a high conversion is observed in SERS due to the high reactivity in the hotspots, most of the adsorbed molecules on the AuNP surface remain unreacted. The theoretical findings are compared with the hot-electron-induced dehalogenation of 4-bromothiophenol, indicating a time dependency of the hot-carrier concentration in plasmon-mediated reactions. To fit the kinetics of plasmon-mediated reactions in plasmonic hotspots, fractal-like kinetics are well suited to account for the inhomogeneity of reactive sites on the substrates, whereas also modified standard kinetics model allows equally well fits. The outcomes of this study are on the one hand essential to derive a mechanistic understanding of reactions on plasmonic substrates by SERS measurements and on the other hand to drive plasmonic reactions with high local precision and facilitate the engineering of chemistry on a nanoscale.}, language = {en} } @article{CheaSchadeReinickeetal.2022, author = {Chea, Sany and Schade, Kristin and Reinicke, Stefan and Bleul, Regina and Rosencrantz, Ruben R.}, title = {Synthesis and self-assembly of cytidine- and guanosine-based copolymers}, series = {Polymer Chemistry}, volume = {13}, journal = {Polymer Chemistry}, number = {35}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/d2py00615d}, pages = {5058 -- 5067}, year = {2022}, abstract = {The base pairing property and the "melting" behavior of oligonucleotides can take advantage to develop new smart thermoresponsive and programmable materials. Complementary cytidine- (C) and guanosine- (G) based monomers were blockcopolymerized using RAFT polymerization technique with poly-(N-(2-hydroxypropyl) methacrylamide) (pHPMA) as the hydrophilic macro chain transfer agent (macro-CTA). C-C, G-G and C-G hydrogen bond interactions of blockcopolymers with respectively C and G moieties have been investigated using SEM, DLS and UV-Vis. Mixing and heating both complementary copolymers resulted in reforming new aggregates. Due to the ribose moiety of the isolated nucleoside-bearing blockcopolymers, the polarity is increased for better solubility. Self-assembly investigations of these bioinspired compounds are the crucial basis for the development of potential future drug delivery systems.}, language = {en} } @article{SperlichKoeckerling2022, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {[Nb6Cl14(pyrazine)(4)], a versatile precursor for ligand-supported hexanuclear niobium cluster compounds: synthesis, characterization, follow-up reactions, and intermolecular interactions}, series = {Inorganic chemistry}, volume = {61}, journal = {Inorganic chemistry}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.1c03109}, pages = {2409 -- 2420}, year = {2022}, abstract = {The compound [Nb6Cl14(pyrazine)(4)]center dot 2CH(2)Cl(2) (1) was investigated for its suitability as a starting compound for new ligand-supported hexanuclear niobium cluster compounds. The synthesis, stability to air and increased temperature, solubility and usability for subsequent reactions of 1, and purification and separation of the reaction products are discussed. The compounds with cluster units [Nb6Cl14L4], where L = iso-quinoline N-oxides (2), 1,1-dimethylethylenediamines (3), or thiazoles (4), and [Nb6Cl14(PEt3)(3.76)(Et3PO)(0.24)]-[Nb6Cl14(MeCN)(4)]center dot 4MeCN (5) are presented as follow-up products. The crystal structures of compounds 1-5 are analyzed, and the structures are discussed with respect to their intraand intermolecular bonding situations and crystal packing. In addition to hydrogen bonds and pi-pi interactions, the appearance of chalcogen and halogen bonds and lone pair-pi interactions between Nb-6 cluster units was observed for the first time.}, language = {en} } @article{TitovKoppHocheetal.2022, author = {Titov, Evgenii and Kopp, Tristan and Hoche, Joscha and Humeniuk, Alexander and Mitrić, Roland}, title = {(De)localization dynamics of molecular excitons}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {24}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {20}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp00586g}, pages = {12136 -- 12148}, year = {2022}, abstract = {Molecular excitons play a central role in processes of solar energy conversion, both natural and artificial. It is therefore no wonder that numerous experimental and theoretical investigations in the last decade, employing state-of-the-art spectroscopic techniques and computational methods, have been driven by the common aim to unravel exciton dynamics in multichromophoric systems. Theoretically, exciton (de)localization and transfer dynamics are most often modelled using either mixed quantum-classical approaches (e.g., trajectory surface hopping) or fully quantum mechanical treatments (either using model diabatic Hamiltonians or direct dynamics). Yet, the terms such as "exciton localization" or "exciton transfer" may bear different meanings in different works depending on the method in use (quantum-classical vs. fully quantum). Here, we relate different views on exciton (de)localization. For this purpose, we perform molecular surface hopping simulations on several tetracene dimers differing by a magnitude of exciton coupling and carry out quantum dynamical as well as surface hopping calculations on a relevant model system. The molecular surface hopping simulations are done using efficient long-range corrected time-dependent density functional tight binding electronic structure method, allowing us to gain insight into different regimes of exciton dynamics in the studied systems.}, language = {en} } @article{FischerAndersSaalfrank2022, author = {Fischer, Eric Wolfgang and Anders, Janet and Saalfrank, Peter}, title = {Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {156}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {15}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0021-9606}, doi = {10.1063/5.0076434}, pages = {16}, year = {2022}, abstract = {It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrodinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency omega(c) is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well.}, language = {en} } @article{ReifarthBekirBapolisietal.2022, author = {Reifarth, Martin and Bekir, Marek and Bapolisi, Alain M. and Titov, Evgenii and Nusshardt, Fabian and Nowaczyk, Julius and Grigoriev, Dmitry and Sharma, Anjali and Saalfrank, Peter and Santer, Svetlana and Hartlieb, Matthias and B{\"o}ker, Alexander}, title = {A dual pH- and light-responsive spiropyrane-based surfactant}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {61}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202114687}, pages = {10}, year = {2022}, abstract = {A cationic surfactant containing a spiropyrane unit is prepared exhibiting a dual-responsive adjustability of its surface-active characteristics. The switching mechanism of the system relies on the reversible conversion of the non-ionic spiropyrane (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH-dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided. This complex stimuli-responsive behavior enables remote-control of colloidal systems. To demonstrate its applicability, the surfactant is utilized for the pH-dependent manipulation of oil-in-water emulsions.}, language = {en} } @article{Picconi2022, author = {Picconi, David}, title = {Quantum dynamics of the photoinduced charge separation in a symmetric donor-acceptor-donor triad}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {156}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {18}, publisher = {AIP Publishing}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0089887}, pages = {15}, year = {2022}, abstract = {The photoinduced charge separation in a symmetric donor-acceptor-donor (D-A-D) triad is studied quantum mechanically using a realistic diabatic vibronic coupling model. The model includes a locally excited DA*D state and two charge-transfer states D(+)A(-)D and DA(-)D(+) and is constructed according to a procedure generally applicable to semirigid D-A-D structures and based on energies, forces, and force constants obtained by quantum chemical calculations. In this case, the electronic structure is described by time-dependent density functional theory, and the corrected linear response is used in conjunction with the polarizable continuum model to account for state-specific solvent effects. The multimode dynamics following the photoexcitation to the locally excited state are simulated by the hybrid Gaussian-multiconfigurational time-dependent Hartree method, and temperature effects are included using thermo field theory. The dynamics are connected to the transient absorption spectrum obtained in recent experiments, which is simulated and fully assigned from first principles. It is found that the charge separation is mediated by symmetry-breaking vibrations of relatively low frequency, which implies that temperature should be accounted for to obtain reliable estimates of the charge transfer rate.}, language = {en} } @article{TetenoireEhlertJuaristietal.2022, author = {Tetenoire, Auguste and Ehlert, Christopher and Juaristi, Joseba I{\~n}aki and Saalfrank, Peter and Alducin, Maite}, title = {Why ultrafast photoinduced CO desorption dominates over oxidation on Ru(0001)}, series = {The journal of physical chemistry letters}, volume = {13}, journal = {The journal of physical chemistry letters}, number = {36}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.2c02327}, pages = {8516 -- 8521}, year = {2022}, abstract = {CO oxidation on Ru(0001) is a long-standing example of a reaction that, being thermally forbidden in ultrahigh vacuum, can be activated by femtosecond laser pulses. In spite of its relevance, the precise dynamics of the photoinduced oxidation process as well as the reasons behind the dominant role of the competing CO photodesorption remain unclear. Here we use ab initio molecular dynamics with electronic friction that account for the highly excited and nonequilibrated system created by the laser to investigate both reactions. Our simulations successfully reproduce the main experimental findings: the existence of photoinduced oxidation and desorption, the large desorption to oxidation branching ratio, and the changes in the O K-edge X-ray absorption spectra attributed to the initial stage of the oxidation process. Now, we are able to monitor in detail the ultrafast CO desorption and CO oxidation occurring in the highly excited system and to disentangle what causes the unexpected inertness to the otherwise energetically favored oxidation.}, language = {en} } @article{ChoudhuryDeVineSinhaetal.2022, author = {Choudhury, Arnab and DeVine, Jessalyn A. A. and Sinha, Shreya and Lau, Jascha Alexander and Kandratsenka, Alexander and Schwarzer, Dirk and Saalfrank, Peter and Wodtke, Alec Michael}, title = {Condensed-phase isomerization through tunnelling gateways}, series = {Nature : the international weekly journal of science}, volume = {612}, journal = {Nature : the international weekly journal of science}, number = {7941}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-022-05451-0}, pages = {691 -- 695}, year = {2022}, abstract = {Quantum mechanical tunnelling describes transmission of matter waves through a barrier with height larger than the energy of the wave(1). Tunnelling becomes important when the de Broglie wavelength of the particle exceeds the barrier thickness; because wavelength increases with decreasing mass, lighter particles tunnel more efficiently than heavier ones. However, there exist examples in condensed-phase chemistry where increasing mass leads to increased tunnelling rates(2). In contrast to the textbook approach, which considers transitions between continuum states, condensed-phase reactions involve transitions between bound states of reactants and products. Here this conceptual distinction is highlighted by experimental measurements of isotopologue-specific tunnelling rates for CO rotational isomerization at an NaCl surface(3,4), showing nonmonotonic mass dependence. A quantum rate theory of isomerization is developed wherein transitions between sub-barrier reactant and product states occur through interaction with the environment. Tunnelling is fastest for specific pairs of states (gateways), the quantum mechanical details of which lead to enhanced cross-barrier coupling; the energies of these gateways arise nonsystematically, giving an erratic mass dependence. Gateways also accelerate ground-state isomerization, acting as leaky holes through the reaction barrier. This simple model provides a way to account for tunnelling in condensed-phase chemistry, and indicates that heavy-atom tunnelling may be more important than typically assumed.}, language = {en} } @article{KapernaumLangeEbertetal.2022, author = {Kapernaum, Nadia and Lange, Alyna and Ebert, Max and Grunwald, Marco A. and H{\"a}ge, Christian and Marino, Sebastian and Zens, Anna and Taubert, Andreas and Gießelmann, Frank and Laschat, Sabine}, title = {Current topics in ionic liquid crystals}, series = {ChemPlusChem}, volume = {87}, journal = {ChemPlusChem}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.202100397}, pages = {38}, year = {2022}, abstract = {Ionic liquid crystals (ILCs), that is, ionic liquids exhibiting mesomorphism, liquid crystalline phases, and anisotropic properties, have received intense attention in the past years. Among others, this is due to their special properties arising from the combination of properties stemming from ionic liquids and from liquid crystalline arrangements. Besides interesting fundamental aspects, ILCs have been claimed to have tremendous application potential that again arises from the combination of properties and architectures that are not accessible otherwise, or at least not accessible easily by other strategies. The current review highlights recent developments in ILC research, starting with some key fundamental aspects. Further subjects covered include the synthesis and variations of modern ILCs, including the specific tuning of their mesomorphic behavior. The review concludes with reflections on some applications that may be within reach for ILCs and finally highlights a few key challenges that must be overcome prior and during true commercialization of ILCs.}, language = {en} } @article{Hartlieb2022, author = {Hartlieb, Matthias}, title = {Photo-iniferter RAFT polymerization}, series = {Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation}, volume = {43}, journal = {Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3927}, doi = {10.1002/marc.202100514}, pages = {25}, year = {2022}, abstract = {Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.}, language = {en} } @article{LiuGouldKratzetal.2022, author = {Liu, Yue and Gould, Oliver E. C. and Kratz, Karl and Lendlein, Andreas}, title = {On demand sequential release of (sub)micron particles controlled by size and temperature}, series = {Small : nano micro}, volume = {18}, journal = {Small : nano micro}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.202104621}, pages = {8}, year = {2022}, abstract = {Polymeric devices capable of releasing submicron particles (subMP) on demand are highly desirable for controlled release systems, sensors, and smart surfaces. Here, a temperature-memory polymer sheet with a programmable smooth surface served as matrix to embed and release polystyrene subMP controlled by particle size and temperature. subMPs embedding at 80 degrees C can be released sequentially according to their size (diameter D of 200 nm, 500 nm, 1 mu m) when heated. The differences in their embedding extent are determined by the various subMPs sizes and result in their distinct release temperatures. Microparticles of the same size (D approximate to 1 mu m) incorporated in films at different programming temperatures T-p (50, 65, and 80 degrees C) lead to a sequential release based on the temperature-memory effect. The change of apparent height over the film surface is quantified using atomic force microscopy and the realization of sequential release is proven by confocal laser scanning microscopy. The demonstration and quantification of on demand subMP release are of technological impact for assembly, particle sorting, and release technologies in microtechnology, catalysis, and controlled release.}, language = {en} } @article{MoradianGossenLendlein2022, author = {Moradian, Hanieh and Gossen, Manfred and Lendlein, Andreas}, title = {Co-delivery of genes can be confounded by bicistronic vector design}, series = {MRS Communications}, volume = {12}, journal = {MRS Communications}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {2159-6859}, doi = {10.1557/s43579-021-00128-7}, pages = {145 -- 153}, year = {2022}, abstract = {Maximizing the efficiency of nanocarrier-mediated co-delivery of genes for co-expression in the same cell is critical for many applications. Strategies to maximize co-delivery of nucleic acids (NA) focused largely on carrier systems, with little attention towards payload composition itself. Here, we investigated the effects of different payload designs: co-delivery of two individual "monocistronic" NAs versus a single bicistronic NA comprising two genes separated by a 2A self-cleavage site. Unexpectedly, co-delivery via the monocistronic design resulted in a higher percentage of co-expressing cells, while predictive co-expression via the bicistronic design remained elusive. Our results will aid the application-dependent selection of the optimal methodology for co-delivery of genes.}, language = {en} } @article{LindicSinhaMattssonetal.2022, author = {Lindic, Tilen and Sinha, Shreya and Mattsson, Stefan and Paulus, Beate}, title = {Prediction of a model crystal structure for Ni2F5 by first-principles calculations}, series = {Zeitschrift f{\"u}r Naturforschung : B, Chemical sciences}, volume = {77}, journal = {Zeitschrift f{\"u}r Naturforschung : B, Chemical sciences}, number = {6}, publisher = {De Gruyter}, address = {Berlin}, issn = {0932-0776}, doi = {10.1515/znb-2022-0072}, pages = {469 -- 473}, year = {2022}, abstract = {Electrochemical fluorination in anhydrous HF, also known as the Simons process, is a widely used industrial method for fluorination of organic compounds. Its mechanism, being not so well understood, has long been debated and is believed to involve higher valent nickel fluorides formed on the nickel-plated anode during the process. One of these is speculated to be Ni2F5, which was previously reported in the literature and assigned via infrared spectroscopy, but its crystal structure is not yet known. We have identified known crystal structures of compounds with similar stoichiometries as Ni2F5 and utilized them as a starting point for our periodic DFT investigations, applying the PBE+U method. Ni2F5 as the most stable polymorph was found to be of the same crystal structure as another mixed valent fluoride, Cr2F5. The calculated lattice parameters are a = 7.24 angstrom, b = 7.40 angstrom, c = 7.08 angstrom and beta = 118.9 degrees with an antiferromagnetic ordering of the nickel magnetic moments.}, language = {en} } @article{KossmannSanchezManjavacasBrandtetal.2022, author = {Kossmann, Janina and Sanchez-Manjavacas, Maria Luz Ortiz and Brandt, Jessica and Heil, Tobias and L{\´o}pez-Salas, Nieves and Albero, Josep}, title = {Mn(ii) sub-nanometric site stabilization in noble, N-doped carbonaceous materials for electrochemical CO2 reduction}, series = {Chemical communications : ChemComm / The Royal Society of Chemistry}, volume = {58}, journal = {Chemical communications : ChemComm / The Royal Society of Chemistry}, number = {31}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/d2cc00585a}, pages = {4841 -- 4844}, year = {2022}, abstract = {The preparation of stable and efficient electrocatalysts comprising abundant and non-critical row-materials is of paramount importance for their industrial implementation. Herein, we present a simple synthetic route to prepare Mn(ii) sub-nanometric active sites over a highly N-doped noble carbonaceous support. This support not only promotes a strong stabilization of the Mn(ii) sites, improving its stability against oxidation, but also provides a convenient coordination environment in the Mn(ii) sites able to produce CO, HCOOH and CH3COOH from electrochemical CO2 reduction.}, language = {en} } @article{LopezdeGuerenuKurganovaKlierHaubitzetal.2022, author = {L{\´o}pez de Guere{\~n}u Kurganova, Anna and Klier, Dennis Tobias and Haubitz, Toni and Kumke, Michael Uwe}, title = {Influence of Gd3+ doping concentration on the properties of Na(Y,Gd)F-4}, series = {Photochemical \& photobiological sciences / European Society for Photobiology}, volume = {21}, journal = {Photochemical \& photobiological sciences / European Society for Photobiology}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1474-905X}, doi = {10.1007/s43630-021-00161-4}, pages = {235 -- 245}, year = {2022}, abstract = {We present a systematic study on the properties of Na(Y,Gd)F-4-based upconverting nanoparticles (UCNP) doped with 18\% Yb3+, 2\% Tm3+, and the influence of Gd3+ (10-50 mol\% Gd3+). UCNP were synthesized via the solvothermal method and had a range of diameters within 13 and 50 nm. Structural and photophysical changes were monitored for the UCNP samples after a 24-month incubation period in dry phase and further redispersion. Structural characterization was performed by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as dynamic light scattering (DLS), and the upconversion luminescence (UCL) studies were executed at various temperatures (from 4 to 295 K) using time-resolved and steady-state spectroscopy. An increase in the hexagonal lattice phase with the increase of Gd3+ content was found, although the cubic phase was prevalent in most samples. The Tm3+-luminescence intensity as well as the Tm3+-luminescence decay times peaked at the Gd3+ concentration of 30 mol\%. Although the general upconverting luminescence properties of the nanoparticles were preserved, the 24-month incubation period lead to irreversible agglomeration of the UCNP and changes in luminescence band ratios and lifetimes.}, language = {en} } @misc{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1316}, issn = {1866-8372}, doi = {10.25932/publishup-58751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587512}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @article{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {RSC Advances}, volume = {12}, journal = {RSC Advances}, publisher = {RSC}, address = {London}, issn = {2046-2069}, doi = {10.1039/d2ra05581c}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @article{PilarYesteCarlosHernandezGarridoKumkeetal.2022, author = {Pilar Yeste, Maria and Carlos Hernandez-Garrido, Juan and Kumke, Michael Uwe and Alvarado, Sarah and Cauqui, Miguel Angel and Juan Calvino, Jose and Primus, Philipp-Alexander}, title = {Low-temperature growth of reactive pyrochlore nanostructures on Zirconia-supported ceria}, series = {ACS applied nano materials}, volume = {5}, journal = {ACS applied nano materials}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0970}, doi = {10.1021/acsanm.2c00416}, pages = {6316 -- 6326}, year = {2022}, abstract = {The use of a catalyst support for the design of nanoscale heterogeneous catalysts based on cerium oxide offers vast possibilities for future catalyst development, particularly with regard to an increased focus on the use of renewable biogas and an emerging hydrogen economy. In this study, zirconia-supported ceria catalysts were synthesized, activated by using different thermochemical treatments, and characterized by way of temperature-programmed reduction (TPR), oxygen storage capacity, Xray diffraction, electron microscopy, and luminescence spectroscopy using Eu3+ as a spectroscopic probe. Through reduction-oxidation pretreatment routines, reactive pyrochlore structures were created at temperatures as low as 600 degrees C and identified through TPR and electron microscopy experiments. A structural relationship and alignment of the crystal planes is revealed in high-resolution scanning transmission electron microscopy experiments through the digital diffraction patterns. Low-temperature pretreatment induces the formation of reactive pyrochlore domains under retention of the surface area of the catalyst system, and no further morphological changes are detected. Furthermore, the formation of pyrochlore domains achieved through severe reduction and mild reoxidation (SRMO) treatments is reversible. Over multiple alternating SRMO and severe reduction and severe reoxidation (SRSO) treatments, europium spectroscopy and TPR results indicate that pyrochlore structures are recreated over consecutive treatments, whenever the mild oxidation step at 500 degrees C is the last treatment (SRMO, SRMO-SRSO-SRMO, etc.).}, language = {en} } @article{MazurekBudzyńskaBehlNeumannetal.2022, author = {Mazurek-Budzyńska, Magdalena and Behl, Marc and Neumann, Richard and Lendlein, Andreas}, title = {4D-actuators by 3D-printing combined with water-based curing}, series = {Materials today. Communications}, volume = {30}, journal = {Materials today. Communications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4928}, doi = {10.1016/j.mtcomm.2021.102966}, pages = {7}, year = {2022}, abstract = {The shape and the actuation capability of state of the art robotic devices typically relies on multimaterial systems from a combination of geometry determining materials and actuation components. Here, we present multifunctional 4D-actuators processable by 3D-printing, in which the actuator functionality is integrated into the shaped body. The materials are based on crosslinked poly(carbonate-urea-urethane) networks (PCUU), synthesized in an integrated process, applying reactive extrusion and subsequent water-based curing. Actuation capability could be added to the PCUU, prepared from aliphatic oligocarbonate diol, isophorone diisocyanate (IPDI) and water, in a thermomechanical programming process. When programmed with a strain of epsilon(prog) = 1400\% the PCUU networks exhibited actuation apparent by reversible elongation epsilon'(rev) of up to 22\%. In a gripper a reversible bending epsilon'(rev)((be)(nd)()) in the range of 37-60\% was achieved when the actuation temperature (T-high) was varied between 45 degrees C and 49 degrees C. The integration of actuation and shape formation could be impressively demonstrated in two PCUU-based reversible fastening systems, which were able to hold weights of up to 1.1 kg. In this way, the multifunctional materials are interesting candidate materials for robotic applications where a freedom in shape design and actuation is required as well as for sustainable fastening systems.}, language = {en} } @misc{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1301}, issn = {1866-8372}, doi = {10.25932/publishup-57744}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577442}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{PenschkeEdlervonZanderBeqirajetal.2022, author = {Penschke, Christopher and Edler von Zander, Robert and Beqiraj, Alkit and Zehle, Anna and Jahn, Nicolas and Neumann, Rainer and Saalfrank, Peter}, title = {Water on porous, nitrogen-containing layered carbon materials}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies / RSC, Royal Society of Chemistry}, volume = {24}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies / RSC, Royal Society of Chemistry}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp00657j}, pages = {14709 -- 14726}, year = {2022}, abstract = {Porous, layered materials containing sp(2)-hybridized carbon and nitrogen atoms, offer through their tunable properties, a versatile route towards tailormade catalysts for electrochemistry and photochemistry. A key molecule interacting with these quasi two-dimensional materials (2DM) is water, and a photo(electro)chemical key reaction catalyzed by them, is water splitting into H-2 and O-2, with the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) as half reactions. The complexity of some C/N-based 2DM in contact with water raises special needs for their theoretical modelling, which in turn is needed for rational design of C/N-based catalysts. In this work, three classes of C/N-containing porous 2DM with varying pore sizes and C/N ratios, namely graphitic carbon nitride (g-C3N4), C2N, and poly(heptazine imides) (PHI), are studied with various computational methods. We elucidate the performance of different models and model chemistries (the combination of electronic structure method and basis set) for water and water fragment adsorption in the low-coverage regime. Further, properties related to the photo(electro)chemical activity like electrochemical overpotentials, band gaps, and optical excitation energies are in our focus. Specifically, periodic models will be tested vs. cluster models, and density functional theory (DFT) vs. wavefunction theory (WFT). This work serves as a basis for a systematic study of trends for the photo(electro)chemical activity of C/N-containing layered materials as a function of water content, pore size and density.}, language = {en} } @article{LoodTikkKruegeretal.2022, author = {Lood, Kajsa and Tikk, Triin and Kr{\"u}ger, Mandy and Schmidt, Bernd}, title = {Methylene capping facilitates cross-metathesis reactions of enals}, series = {The journal of organic chemistry}, volume = {87}, journal = {The journal of organic chemistry}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.1c02851}, pages = {3079 -- 3088}, year = {2022}, abstract = {Four combinations of type-I olefins isoeugenol and 4-hydroxy-3-methoxystyrene with type-II olefins acrolein and crotonaldehyde were investigated in cross-metathesis (CM) reactions. While both type-I olefins are suitable CM partners for this transformation, we observed synthetically useful conversions only with type-II olefin crotonaldehyde. For economic reasons, isoeugenol, a cheap xylochemical available from renewable lignocellulose or from clove oil, is the preferred type-I CM partner. Nearly quantitative conversions to coniferyl aldehyde by the CM reaction of isoeugenol and crotonaldehyde can be obtained at ambient temperature without a solvent or at high substrate concentrations of 2 mol.L-1 with the second-generation Hoveyda-Grubbs catalyst. Under these conditions, the ratio of reactants can be reduced to 1:1.5 and catalyst loadings as low as 0.25 mol \% are possible. The high reactivity of the isoeugenol/crotonaldehyde combination in olefin metathesis reactions was demonstrated by a short synthesis of the natural product 7-methoxywutaifuranal, which was obtained from isoeugenol in a 44\% yield over five steps. We suggest that the superior performance of crotonaldehyde in the CM reactions investigated can be rationalized by "methylene capping", i.e., the steric stabilization of the propagating Ru-alkylidene species.}, language = {en} } @phdthesis{Chea2022, author = {Chea, Sany}, title = {Glycomaterials: From synthesis of glycoconjugates to potential biomedical applications}, doi = {10.25932/publishup-57424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574240}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 217}, year = {2022}, abstract = {The importance of carbohydrate structures is enormous due to their ubiquitousness in our lives. The development of so-called glycomaterials is the result of this tremendous significance. These are not exclusively used for research into fundamental biological processes, but also, among other things, as inhibitors of pathogens or as drug delivery systems. This work describes the development of glycomaterials involving the synthesis of glycoderivatives, -monomers and -polymers. Glycosylamines were synthesized as precursors in a single synthesis step under microwave irradiation to significantly shorten the usual reaction time. Derivatization at the anomeric position was carried out according to the methods developed by Kochetkov and Likhorshetov, which do not require the introduction of protecting groups. Aminated saccharide structures formed the basis for the synthesis of glycomonomers in β-configuration by methacrylation. In order to obtain α-Man-based monomers for interactions with certain α-Man-binding lectins, a monomer synthesis by Staudinger ligation was developed in this work, which also does not require protective groups. Modification of the primary hydroxyl group of a saccharide was accomplished by enzyme-catalyzed synthesis. Ribose-containing cytidine was transesterified using the lipase Novozym 435 and microwave irradiation. The resulting monomer synthesis was optimized by varying the reaction partners. To create an amide bond instead of an ester bond, protected cytidine was modified by oxidation followed by amide coupling to form the monomer. This synthetic route was also used to isolate the monomer from its counterpart guanosine. After obtaining the nucleoside-based monomers, they were block copolymerized using the RAFT method. Pre-synthesized pHPMA served as macroCTA to yield cytidine- or guanosine-containing block copolymer. These isolated block copolymers were then investigated for their self-assembly behavior using UV-Vis, DLS and SEM to serve as a potential thermoresponsive drug delivery system.}, language = {en} } @phdthesis{Simsek2022, author = {Simsek, Ibrahim}, title = {Ink-based preparation of chalcogenide perovskites as thin films for PV applications}, doi = {10.25932/publishup-57271}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572711}, school = {Universit{\"a}t Potsdam}, pages = {iv, 113}, year = {2022}, abstract = {The increasing demand for energy in the current technological era and the recent political decisions about giving up on nuclear energy diverted humanity to focus on alternative environmentally friendly energy sources like solar energy. Although silicon solar cells are the product of a matured technology, the search for highly efficient and easily applicable materials is still ongoing. These properties made the efficiency of halide perovskites comparable with silicon solar cells for single junctions within a decade of research. However, the downside of halide perovskites are poor stability and lead toxicity for the most stable ones. On the other hand, chalcogenide perovskites are one of the most promising absorber materials for the photovoltaic market, due to their elemental abundance and chemical stability against moisture and oxygen. In the search of the ultimate solar absorber material, combining the good optoelectronic properties of halide perovskites with the stability of chalcogenides could be the promising candidate. Thus, this work investigates new techniques for the synthesis and design of these novel chalcogenide perovskites, that contain transition metals as cations, e.g., BaZrS3, BaHfS3, EuZrS3, EuHfS3 and SrHfS3. There are two stages in the deposition techniques of this study: In the first stage, the binary compounds are deposited via a solution processing method. In the second stage, the deposited materials are annealed in a chalcogenide atmosphere to form the perovskite structure by using solid-state reactions. The research also focuses on the optimization of a generalized recipe for a molecular ink to deposit precursors of chalcogenide perovskites with different binaries. The implementation of the precursor sulfurization resulted in either binaries without perovskite formation or distorted perovskite structures, whereas some of these materials are reported in the literature as they are more favorable in the needle-like non-perovskite configuration. Lastly, there are two categories for the evaluation of the produced materials: The first category is about the determination of the physical properties of the deposited layer, e.g., crystal structure, secondary phase formation, impurities, etc. For the second category, optoelectronic properties are measured and compared to an ideal absorber layer, e.g., band gap, conductivity, surface photovoltage, etc.}, language = {en} } @article{WessigBadetkoCzarneckietal.2022, author = {Wessig, Pablo and Badetko, Dominik and Czarnecki, Maciej and Wichterich, Lukas and Schmidt, Peter and Brudy, Cosima and Sperlich, Eric and Kelling, Alexandra}, title = {Studies toward the total synthesis of arylnaphthalene lignans via a Photo-Dehydro-Diels-Alder (PDDA) reaction}, series = {The journal of organic chemistry}, volume = {87}, journal = {The journal of organic chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.2c00195}, pages = {5904 -- 5915}, year = {2022}, abstract = {An efficient method for the preparation of arylnaphthalene lignans (ANLs) was developed, which is based on thePhoto-Dehydro-DIELS-ALDER(PDDA) reaction. While intermolecular PDDA reactions turned out to be inefficient, theintramolecular variant using suberic acid as tether linking two aryl propiolic esters smoothly provided naphthalenophanes. Theirradiations were performed with a previously developed annular continuous-flow reactor and UVB lamps. In this way, the naturalproducts Alashinol D, Taiwanin C, and an unnamed ANL could be prepared.}, language = {en} } @article{RajuKoetz2022, author = {Raju, Rajarshi Roy and Koetz, Joachim}, title = {Pickering Janus emulsions stabilized with gold nanoparticles}, series = {Langmuir : the ACS journal of surfaces and colloids / American Chemical Society}, volume = {38}, journal = {Langmuir : the ACS journal of surfaces and colloids / American Chemical Society}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.1c02256}, pages = {147 -- 155}, year = {2022}, abstract = {We report a modified approach to the batch scale preparation of completely engulfed core-shell emulsions or partially engulfed Janus emulsions with colorful optical properties, containing water, olive oil, and silicone oil. The in situ reduction of gold chloride, forming gold nanoparticles (AuNPs) at the olive oil interface in the absence or presence of chitosan, leads to the formation of compartmentalized olive-silicone oil emulsion droplets in water. In the absence of additional reducing components, time-dependent morphological transformations from partial engulfment to complete engulfment were observed. Similar experiments in the presence of chitosan or presynthesized AuNPs show an opposite time-dependent trend of transformation of core-shell structures into partially engulfed ones. This behavior can be understood by a time-dependent rearrangement of the AuNPs at the interface and changes of the interfacial tension. The Pickering effect of AuNPs at oil-water and oil-oil interfaces brings not only color effects to individual microdroplets, which are of special relevance for the preparation of new optical elements, but also a surprising self-assembly of droplets.}, language = {en} } @article{HermannsKeller2022, author = {Hermanns, Jolanda and Keller, David}, title = {The development, use, and evaluation of digital games and quizzes in an introductory course on organic chemistry for preservice chemistry teachers}, series = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, volume = {99}, journal = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-9584}, doi = {10.1021/acs.jchemed.2c00058}, pages = {1715 -- 1724}, year = {2022}, abstract = {Due to the COVID pandemic, the introductory course on organic chemistry was developed and conducted as anonline course. To ensure methodical variety in this course,educational games and quizzes have been developed, used, and evaluated. The attendance of the course, and therefore also the use of the quizzes and games, was voluntary. The quizzes'main goalwas to give the students the opportunity to check whether they had memorized the knowledge needed in the course. Another goal was to make transparent which knowledge the students shouldmemorize by rote. The evaluation shows that the students hadnot internalized all knowledge which they should apply in severaltasks on organic chemistry. They answered multiselect questions in general less well than single-select questions. The games shouldcombine fun with learning. The evaluation of the games shows that the students rated them very well. The students used thosegames again for their exam preparation, as the monitoring of accessing the games showed. Students'experiences with usingelectronic devices in general or for quizzes and games have also been evaluated, because their experience could influence thestudents'assessment of the quizzes and games used in our study. However, the students used electronic devices regularly and shouldtherefore be technically competent to use our quizzes and games. The evaluation showed that the use of digital games for learningpurposes is not very common, neither at school nor at university, although the students had worked with such tools before. Thestudents are also very interested in using and developing such digital games not only for their own study, but also for their future work at school}, language = {en} } @article{PruefertVillatoroLealZuehlkeetal.2022, author = {Pr{\"u}fert, Christian and Villatoro Leal, Jos{\´e} Andr{\´e}s and Z{\"u}hlke, Martin and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Liquid phase IR-MALDI and differential mobility analysis of nano- and sub-micron particles}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {4}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp04196g}, pages = {2275 -- 2286}, year = {2022}, abstract = {Infrared matrix-assisted desorption and ionization (IR-MALDI) enables the transfer of sub-micron particles (sMP) directly from suspensions into the gas phase and their characterization with differential mobility (DM) analysis. A nanosecond laser pulse at 2940 nm induces a phase explosion of the aqueous phase, dispersing the sample into nano- and microdroplets. The particles are ejected from the aqueous phase and become charged. Using IR-MALDI on sMP of up to 500 nm in diameter made it possible to surpass the 100 nm size barrier often encountered when using nano-electrospray for ionizing supramolecular structures. Thus, the charge distribution produced by IR-MALDI could be characterized systematically in the 50-500 nm size range. Well-resolved signals for up to octuply charged particles were obtained in both polarities for different particle sizes, materials, and surface modifications spanning over four orders of magnitude in concentrations. The physicochemical characterization of the IR-MALDI process was done via a detailed analysis of the charge distribution of the emerging particles, qualitatively as well as quantitatively. The Wiedensohler charge distribution, which describes the evolution of particle charging events in the gas phase, and a Poisson-derived charge distribution, which describes the evolution of charging events in the liquid phase, were compared with one another with respect to how well they describe the experimental data. Although deviations were found in both models, the IR-MALDI charging process seems to resemble a Poisson-like charge distribution mechanism, rather than a bipolar gas phase charging one.}, language = {en} } @phdthesis{Baeckemo2022, author = {B{\"a}ckemo, Johan Dag Valentin}, title = {Digital tools and bioinspiration for the implementation in science and medicine}, doi = {10.25932/publishup-57145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571458}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 108}, year = {2022}, abstract = {Diese Doktorarbeit untersucht anhand dreier Beispiele, wie digitale Werkzeuge wie Programmierung, Modellierung, 3D-Konstruktions-Werkzeuge und additive Fertigung in Verbindung mit einer auf Biomimetik basierenden Design\-strategie zu neuen Analysemethoden und Produkten f{\"u}hren k{\"o}nnen, die in Wissenschaft und Medizin Anwendung finden. Das Verfahren der Funkenerosion (EDM) wird h{\"a}ufig angewandt, um harte Metalle zu verformen oder zu formen, die mit normalen Maschinen nur schwer zu bearbeiten sind. In dieser Arbeit wird eine neuartige Kr{\"u}mmungsanalysemethode als Alternative zur Rauheitsanalyse vorgestellt. Um besser zu verstehen, wie sich die Oberfl{\"a}che w{\"a}hrend der Bearbeitungszeit des EDM-Prozesses ver{\"a}ndert, wurde außerdem ein digitales Schlagmodell erstellt, das auf einem urspr{\"u}nglich flachen Substrat Krater auf Erhebungen erzeugte. Es wurde festgestellt, dass ein Substrat bei etwa 10.000 St{\"o}ßen ein Gleichgewicht erreicht. Die vorgeschlagene Kr{\"u}mmungsanalysemethode hat das Potenzial, bei der Entwicklung neuer Zellkultursubstrate f{\"u}r die Stammzellenforschung eingesetzt zu werden. Zwei Arten, die in dieser Arbeit aufgrund ihrer interessanten Mechanismen analysiert wurden, sind die Venusfliegenfalle und der Bandwurm. Die Venusfliegenfalle kann ihr Maul mit einer erstaunlichen Geschwindigkeit schließen. Der Schließmechanismus kann f{\"u}r die Wissenschaft interessant sein und ist ein Beispiel f{\"u}r ein so genanntes mechanisch bi-stabiles System - es gibt zwei stabile Zust{\"a}nde. Der Bandwurm ist bei S{\"a}ugetieren meist im unteren Darm zu finden und heftet sich mit seinen Saugn{\"a}pfen an die Darmw{\"a}nde. Wenn der Bandwurm eine geeignete Stelle gefunden hat, st{\"o}ßt er seine Haken aus und heftet sich dauerhaft an die Wand. Diese Funktion k{\"o}nnte in der minimalinvasiven Medizin genutzt werden, um eine bessere Kontrolle der Implantate w{\"a}hrend des Implantationsprozesses zu erm{\"o}glichen. F{\"u}r beide Projekte wurde ein mathematisches Modell, das so genannte Chained Beam Constraint Model (CBCM), verwendet, um das nichtlineare Biegeverhalten zu modellieren und somit vorherzusagen, welche Strukturen ein mechanisch bi-stabiles Verhalten aufweisen k{\"o}nnten. Daraufhin konnten zwei Prototypen mit einem 3D-Drucker gedruckt und durch Experimente veranschaulicht werden, dass sie beide ein bi-stabiles Verhalten aufweisen. Diese Arbeit verdeutlicht das hohe Anwendungspotenzial f{\"u}r neue Analysenmethoden in der Wissenschaft und f{\"u}r neue Medizinprodukte in der minimalinvasiven Medizin.}, language = {en} } @phdthesis{Fischer2022, author = {Fischer, Eric Wolfgang}, title = {Quantum vibrational dynamics in complex environments: from vibrational strong coupling in molecular cavity QED to phonon-induced adsorbate relaxation}, doi = {10.25932/publishup-56721}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567214}, school = {Universit{\"a}t Potsdam}, pages = {viii, 171}, year = {2022}, abstract = {Molecules are often naturally embedded in a complex environment. As a consequence, characteristic properties of a molecular subsystem can be substantially altered or new properties emerge due to interactions between molecular and environmental degrees of freedom. The present thesis is concerned with the numerical study of quantum dynamical and stationary properties of molecular vibrational systems embedded in selected complex environments. In the first part, we discuss "strong-coupling" model scenarios for molecular vibrations interacting with few quantized electromagnetic field modes of an optical Fabry-P{\´e}rot cavity. We thoroughly elaborate on properties of emerging "vibrational polariton" light-matter hybrid states and examine the relevance of the dipole self-energy. Further, we identify cavity-induced quantum effects and an emergent dynamical resonance in a cavity-altered thermal isomerization model, which lead to significant suppression of thermal reaction rates. Moreover, for a single rovibrating diatomic molecule in an optical cavity, we observe non-adiabatic signatures in dynamics due to "vibro-polaritonic conical intersections" and discuss spectroscopically accessible "rovibro-polaritonic" light-matter hybrid states. In the second part, we study a weakly coupled but numerically challenging quantum mechanical adsorbate-surface model system comprising a few thousand surface modes. We introduce an efficient construction scheme for a "hierarchical effective mode" approach to reduce the number of surface modes in a controlled manner. In combination with the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method, we examine the vibrational adsorbate relaxation dynamics from different excited adsorbate states by solving the full non-Markovian system-bath dynamics for the characteristic relaxation time scale. We examine half-lifetime scaling laws from vibrational populations and identify prominent non-Markovian signatures as deviations from Markovian reduced system density matrix theory in vibrational coherences, system-bath entanglement and energy transfer dynamics. In the final part of this thesis, we approach the dynamics and spectroscopy of vibronic model systems at finite temperature by formulating the ML-MCTDH method in the non-stochastic framework of thermofield dynamics. We apply our method to thermally-altered ultrafast internal conversion in the well-known vibronic coupling model of pyrazine. Numerically beneficial representations of multilayer wave functions ("ML-trees") are identified for different temperature regimes, which allow us to access thermal effects on both electronic and vibrational dynamics as well as spectroscopic properties for several pyrazine models.}, language = {en} } @phdthesis{Zhou2022, author = {Zhou, Shuo}, title = {Biological evaluation and sulfation of polymer networks from glycerol glycidyl ether}, school = {Universit{\"a}t Potsdam}, pages = {96}, year = {2022}, abstract = {Cardiovascular diseases are the main cause of death worldwide, and their prevalence is expected to rise in the coming years. Polymer-based artificial replacements have been widely used for the treatment of cardiovascular diseases. Coagulation and thrombus formation on the interfaces between the materials and the human physiological environment are key issues leading to the failure of the medical device in clinical implantation. The surface properties of the materials have a strong influence on the protein adsorption and can direct the blood cell adhesion behavior on the interfaces. Furthermore, implant-associated infections will be induced by bacterial adhesion and subsequent biofilm formation at the implantation site. Thus, it is important to improve the hemocompatibility of an implant by altering the surface properties. One of the effective strategies is surface passivation to achieve protein/cell repelling ability to reduce the risk of thrombosis. This thesis consists of synthesis, functionalization, sterilization, and biological evaluation of bulk poly(glycerol glycidyl ether) (polyGGE), which is a highly crosslinked polyether-based polymer synthesized by cationic ring-opening polymerization. PolyGGE is hypothesized to be able to resist plasma protein adsorption and bacterial adhesion due to analogous chemical structure as polyethylene glycol and hyperbranched polyglycerol. Hydroxyl end groups of polyGGE provide possibilities to be functionalized with sulfates to mimic the anti-thrombogenic function of the endothelial glycocalyx. PolyGGE was synthesized by polymerization of the commercially available monomer glycerol glycidyl ether, which was characterized as a mixture of mono-, di- and tri-glycidyl ether. Cationic ring opening-polymerization of this monomer was carried out by ultraviolet (UV) initiation of the photo-initiator diphenyliodonium hexafluorophosphate. With the increased UV curing time, more epoxides in the side chains of the monomers participated in chemical crosslinking, resulting in an increase of Young's modulus, while the value of elongation at break of polyGGE first increased due to the propagation of the polymer chains then decreased with the increase of crosslinking density. Eventually, the chain propagation can be effectively terminated by potassium hydroxide aqueous solution. PolyGGE exhibited different tensile properties in hydrated conditions at body temperature compared to the values in the dry state at room temperature. Both Young's modulus and values of elongation at break were remarkably reduced when tested in water at 37 °C, which was above the glass transition temperature of polyGGE. At physiological conditions, entanglements of the ployGGE networks unfolded and the free volume of networks were replaced by water molecules as softener, which increased the mobility of the polymer chains, resulting in a lower Young's modulus. Protein adsorption analysis was performed on polyGGE films with 30 min UV curing using an enzyme-linked immunosorbent assay. PolyGGE could effectively prevent the adsorption of human plasma fibrinogen, albumin, and fibronectin at the interface of human plasma and polyGGE films. The protein resistance of polyGGE was comparable to the negative controls: the hemocompatible polydimethylsiloxane (PDMS), showing its potential as a coating material for cardiovascular implants. Moreover, antimicrobial tests of bacterial activity using isothermal microcalorimetry and the microscopic image of direct bacteria culturing demonstrated that polyGGE could directly interfere biofilm formation and growth of both Gram-negative and antibiotic-resistant Gram-positive bacteria, indicating the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading. To investigate its cell compatibility, polyGGE films were extracted by different solvents (ethanol, chloroform, acetone) and cell culture medium. Indirect cytotoxicity tests showed extracted polyGGE films still had toxic effects on L929 fibroblast cells. High-performance liquid chromatography/electrospray ionization mass spectrometry revealed the occurrence of organochlorine-containing compounds released during the polymer-cell culture medium interaction. A constant level of those organochlorine-containing compounds was confirmed from GGE monomer by a specific peak of C-Cl stretching in infrared spectra of GGE. This is assumed to be the main reason causing the increased cell membrane permeability and decreased metabolic activity, leading to cell death. Attempts as changing solvents were made to remove toxic substances, however, the release of these small molecules seems to be sluggish. The densely crosslinked polyGGE networks can possibly contribute to the trapping of organochlorine-containing compounds. These results provide valuable information for exploring the potentially toxic substances, leaching from polyGGE networks, and propose a feasible strategy for minimizing the cytotoxicity via reducing their crosslinking density. Sulfamic acid/ N-Methyl-2-pyrrolidone (NMP) were selected as the reagents for the sulfation of polyGGE surfaces. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FT-IR) was used to monitor the functionalization kinetics and the results confirmed the successful sulfate grafting on the surface of polyGGE with the covalent bond -C-O-S-. X-ray photoelectron spectroscopy was used to determine the element composition on the surface and the cross-section of the functionalized polyGGE and sulfation within 15 min guarantees the sulfation only takes place on the surface while not occurring in the bulk of the polymer. The concentration of grafted sulfates increased with the increasing reaction time. The hydrophilicity of the surface of polyGGE was highly increased due to the increase of negatively charged end groups. Three sterilization techniques including autoclaving, gamma irradiation, and ethylene oxide (EtO) sterilization were used for polyGGE sulfates. Results from ATR-FT-IR and Toluidine Blue O quantitative assay demonstrated the total loss of the sulfates after autoclave sterilization, which was also confirmed by the increased water contact angle. Little influence on the concentration of sulfates was found for gamma-irradiated and autoclaving sterilized polyGGE sulfates. To investigate the thermal influence on polyGGE sulfates, one strategy was to use poly(hydroxyethyl acrylate) sulfates (PHEAS) for modeling. The thermogravimetric analysis profile of PHEAS demonstrated that sulfates are not thermally stable independent of the substrate materials and decomposition of sulfates occurs at around 100 °C. Although gamma irradiation also showed little negative effect on the sulfate content, the color change in the polyGGE sulfates indicates chemical or physical change might occur in the polymer. EtO sterilization was validated as the most suitable sterilization technique to maintain the chemical structure of polyGGE sulfates. In conclusion, the conducted work proved that bulk polyGGE can be used as an antifouling coating material and shows its antimicrobial potential. Sulfates functionalization can be effectively realized using sulfamic acid/NMP. EtO sterilization is the most suitable sterilization technique for grafted sulfates. Besides, this thesis also offers a good strategy for the analysis of toxic leachable substances using suitable physicochemical characterization techniques. Future work will focus on minimizing/eliminating the release of toxic substances via reducing the crosslinking density. Another interesting aspect is to study whether grafted sulfates can meet the need for anti-thrombogenicity.}, language = {en} } @article{SperlichKellingKwesigaetal.2022, author = {Sperlich, Eric and Kelling, Alexandra and Kwesiga, George and Schmidt, Bernd}, title = {Intermolecular interactions in the solid-state structures of isoflavones}, series = {CrystEngComm / The Royal Society of Chemistry}, volume = {24}, journal = {CrystEngComm / The Royal Society of Chemistry}, number = {26}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1466-8033}, doi = {10.1039/d2ce00169a}, pages = {4731 -- 4739}, year = {2022}, abstract = {The molecular structures of three closely related isoflavones have been determined by single crystal X-ray diffraction and have been analysed by geometry matching with the CSD, Hirshfeld surface analysis and analysis of stacking interactions with the Aromatic Analyser program (CSD). The formation of the supramolecular structure by non-covalent interactions was studied and substantial differences in the macroscopic properties e.g., the solubility, were correlated with hydrogen bonding and pi-stacking interactions. Moreover, a correlation between the supramolecular structure, the torsion angle (between benzopyran group and aryl group), and macroscopic properties was determined in the three compounds.}, language = {en} } @phdthesis{Tang2022, author = {Tang, Jo Sing Julia}, title = {Biofunctional polymers for medical applications}, doi = {10.25932/publishup-56363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563639}, school = {Universit{\"a}t Potsdam}, pages = {III, 150, V}, year = {2022}, abstract = {Carbohydrates are found in every living organism, where they are responsible for numerous, essential biological functions and processes. Synthetic polymers with pendant saccharides, called glycopolymers, mimic natural glycoconjugates in their special properties and functions. Employing such biomimetics furthers the understanding and controlling of biological processes. Hence, glycopolymers are valuable and interesting for applications in the medical and biological field. However, the synthesis of carbohydrate-based materials can be very challenging. In this thesis, the synthesis of biofunctional glycopolymers is presented, with the focus on aqueous-based, protecting group free and short synthesis routes to further advance in the field of glycopolymer synthesis. A practical and versatile precursor for glycopolymers are glycosylamines. To maintain biofunctionality of the saccharides after their amination, regioselective functionalization was performed. This frequently performed synthesis was optimized for different sugars. The optimization was facilitated using a design of experiment (DoE) approach to enable a reduced number of necessary experiments and efficient procedure. Here, the utility of using DoE for optimizing the synthesis of glycosylamines is discussed. The glycosylamines were converted to glycomonomers which were then polymerized to yield biofunctional glycopolymers. Here, the glycopolymers were aimed to be applicable as layer-by-layer (LbL) thin film coatings for drug delivery systems. To enable the LbL technique, complimentary glycopolymer electrolytes were synthesized by polymerization of the glycomonomers and subsequent modification or by post-polymerization modification. For drug delivery, liposomes were embedded into the glycopolymer coating as potential cargo carriers. The stability as well as the integrity of the glycopolymer layers and liposomes were investigated at physiological pH range. Different glycopolymers were also synthesized to be applicable as anti-adhesion therapeutics by providing advanced architectures with multivalent presentations of saccharides, which can inhibit the binding of pathogene lectins. Here, the synthesis of glycopolymer hydrogel particles based on biocompatible poly(N-isopropylacrylamide) (NiPAm) was established using the free-radical precipitation polymerization technique. The influence of synthesis parameters on the sugar content in the gels and on the hydrogel morphology is discussed. The accessibility of the saccharides to model lectins and their enhanced, multivalent interaction were investigated. At the end of this work, the synthesis strategies for the glycopolymers are generally discussed as well as their potential application in medicine.}, language = {en} } @article{PolleyWernerBalderasValadezetal.2022, author = {Polley, Nabarun and Werner, Peter and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia}, title = {Bottom, top, or in between}, series = {Advanced materials interfaces}, volume = {9}, journal = {Advanced materials interfaces}, number = {15}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202102312}, pages = {10}, year = {2022}, abstract = {Attractive label-free plasmonic optical fiber sensors can be developed by cleverly choosing the arrangement of plasmonic nanostructures and other building blocks. Here, the final response depends very much on the alignment and position (stacking) of the individual elements. In this work, three different types of fiber optic sensing geometries fabricated by simple layer-by-layer stacking are presented, consisting of stimulus-sensitive poly-N-isopropylacrylamide (polyNIPAM) microgel arrays and plasmonic nanohole arrays (NHAs), namely NHA/polyNIPAM, polyNIPAM/NHA, polyNIPAM/NHA/polyNIPAM. Their optical response to a representative stimulus, namely temperature, is investigated. NHA/polyNIPAM monitors the volume phase transition of polyNIPAM microgels through changes in the spectral position and the amplitude of the reflection minimum of plasmonic NHA. In contrast, polyNIPAM/NHA shows a more complex response to the swelling and collapse of polyNIPAM microgels in their reflectance spectra. The most pronounced changes in optical response are observed by monitoring the amplitude of the reflectance minimum of this sensor during heating/cooling cycles. Finally, the triple stack of polyNIPAM/NHA/polyNIPAM at the end of a optical fiber tip combines the advantages of the NHA/polyNIPAM, polyNIPAM/NHA double stacks for optical sensing. The unique layer-by-layer stacking of microgel and nanostructure is customizable and can be easily adopted for other applications.}, language = {en} } @article{KleinpeterKoch2022, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Cyclazines-structure and aromaticity or antiaromaticity on the magnetic criterion}, series = {European journal of organic chemistry}, volume = {2022}, journal = {European journal of organic chemistry}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202101362}, pages = {12}, year = {2022}, abstract = {Structure and spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of all ten cycl[2.2.2]azine to cycl[4.4.4]azine, hetero-analogues and the corresponding hydrocarbons have been calculated at the B3LYP/6-311G(d,p) theory level using the GIAO perturbation method and employing the nucleus independent chemical shift (NICS) concept. The TSNMRS values (actually, the ring current effect as measurable in H-1 NMR spectroscopy) are visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction, and employed to readily qualify and quantify the degree of (anti)aromaticity. Results are confirmed by NMR [delta(H-1)/ppm, delta(N-15)/ppm] and geometry (planar, twisted, bow-shaped) data. The cyclazines N[2.2.2](-) up to N[2.4.4](-) are planar or at most slightly bowl-shaped and, due to coherent peripheral ring currents (except in N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+)), develop aromaticity or anti-aromaticity of the whole molecules dependent on the number of peripheral conjugated pi electrons. The cyclazines N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+) develop two ring currents of different direction within the same molecule, in which the dominating ring current proves to be paratropic (in N[3.3.4](+) diatropic) including the nodal N p(z) lone pair into the conjugation. The residual cyclazines N[3.4.4], N[4.4.4](-) and N[4.4.4](+) are heavily twisted and, therefore, are not developing peripheral or diverse ring currents. The TSNMRS information about cyclazines and the parent tricyclic annulene analogues is congruent subject to structure and number of peripheral or internal conjugated pi electrons, the corresponding (anti)aromaticity is in unequivocal accordance with Huckel's rule.}, language = {en} } @phdthesis{Doering2022, author = {Doering, Ulrike}, title = {Preparation, characterization and modification of oil loaded protein microcapsules and composite protein-mineral microcapsules}, doi = {10.25932/publishup-55958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559589}, school = {Universit{\"a}t Potsdam}, pages = {viii, 115}, year = {2022}, abstract = {Diese Doktorarbeit behandelt die Synthese von Protein- und kompositen Protein-Mineral-Mikrokapseln durch die Anwendung von hochintensivem Ultraschall an der {\"O}l-Wasser-Grenzfl{\"a}che. W{\"a}hrend ein System durch BSA-Molek{\"u}le stabilisiert wird, wird das andere System durch verschiedene mit BSA modifizierten Nanopartikeln stabilisiert. Sowohl von allen Synthesestufen als auch von den resultierenden Kapseln wurden umfassende Untersuchungen durchgef{\"u}hrt und eine plausible Erkl{\"a}rung f{\"u}r den Mechanismus der Kapselbildung wurde vorgestellt. W{\"a}hrend der Bildung der BSA-Mikrokapseln adsorbieren die Proteinmolek{\"u}le als Erstes an der O/W-Grenzfl{\"a}che, entfalten sich dort und bilden ein Netzwerk, das durch hydrophobe Wechselwirkungen und Wasserstoffbr{\"u}ckenbindungen zwischen den benachbarten Molek{\"u}len stabilisiert wird. Gleichzeitig bewirkt die Ultraschallbehandlung die Quervernetzung der BSA-Molek{\"u}le {\"u}ber die Bildung von intermolekularen Disulfidbindungen. In dieser Doktorarbeit werden die experimentellen Nachweise f{\"u}r die durch Ultraschall induzierte Quervernetzung von BSA in den Schalen der proteinbasierten Mikrokapseln aufgezeigt. Deshalb wurde das Konzept, das vor vielen Jahren von Suslick und seinen Mitarbeitern vorgestellt wurde, zum ersten Mal durch experimentelle Nachweise best{\"a}tigt. Außerdem wurde ein konsistenter Mechanismus f{\"u}r die Bildung der intermolekularen Disulfidbindungen in der Kapselschale vorgestellt, der auf der Neuverteilung der Thiol- und Disulfidgruppen in BSA unter der Wirkung von hochenergetischem Ultraschall basiert. Auch die Bildung von kompositen Protein-Mineral-Mikrokapseln, die mit drei verschiedenen {\"O}len gef{\"u}llt wurden und deren Schalen aus Nanopartikeln bestehen, war erfolgreich. Die Beschaffenheit des {\"O}ls und die Art der Nanopartikel in der Schale hatten Einfluss auf die Gr{\"o}ße und Form der Mikrokapseln. Die Untersuchung der kompositen Kapseln zeigte, dass die BSA-Molek{\"u}le, die an der Oberfl{\"a}che der Nanopartikel in der Kapselschale adsorbiert sind, nicht durch intermolekulare Disulfidbindungen quervernetzt sind. Stattdessen findet die Bildung einer Pickering-Emulsion statt. Die Oberfl{\"a}chenmodifizierung der kompositen Mikrokapseln durch Vormodifizierung der Hauptbestandteile und auch durch Postmodifizierung der Oberfl{\"a}che der fertigen kompositen Mikrokapseln wurde erfolgreich demonstriert. Zus{\"a}tzlich wurden die mechanischen Eigenschaften beider Kapselarten verglichen. Dabei erwiesen sich die Protein-Mikrokapseln widerstandsf{\"a}higer gegen{\"u}ber elastischer Deformation.}, language = {en} } @phdthesis{Pruefert2022, author = {Pr{\"u}fert, Christian}, title = {Laser ablation and matter sizing}, doi = {10.25932/publishup-55974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559745}, school = {Universit{\"a}t Potsdam}, pages = {IX, 96}, year = {2022}, abstract = {The doctoral thesis presented provides a comprehensive view of laser-based ablation techniques promoted to new fields of operation, including, but not limited to, size, composition, and concentration analyses. It covers various applications of laser ablation techniques over a wide range of sizes, from single molecules all the way to aerosol particles. The research for this thesis started with broadening and deepening the field of application and the fundamental understanding of liquid-phase IR-MALDI. Here, the hybridization of ion mobility spectrometry and microfluidics was realized by using IR-MALDI as the coupling technique for the first time. The setup was used for monitoring the photocatalytic performance of the E-Z isomerization of olefins. Using this hybrid, measurement times were so drastically reduced that such photocatalyst screenings became a matter of minutes rather than hours. With this on hand, triple measurements screenings could not only be performed within ten minutes, but also with a minimum amount of resources highlighting its potential as a green chemistry alternative to batch-sized reactions. Along the optimizing process of the IR-MALDI source for microfluidics came its application for another liquid sample supply method, the hanging drop. This demarcated one of the first applications of IR-MALDI for the charging of sub-micron particles directly from suspensions via their gas-phase transfer, followed by their characterization with differential mobility analysis. Given the high spectral quality of the data up to octuply charged particles became experimentally accessible, this laid the foundation for deriving a new charge distribution model for IR-MALDI in that size regime. Moving on to even larger analyte sizes, LIBS and LII were employed as ablation techniques for the solid phase, namely the aerosol particles themselves. Both techniques produce light-emitting events and were used to quantify and classify different aerosols. The unique configuration of stroboscopic imaging, photoacoustics, LII, and LIBS measurements opened new realms for analytical synergies and their potential application in industry. The concept of using low fluences, below 100 J/cm2, and high repetition rates of up to 500 Hz for LIBS makes for an excellent phase-selective LIBS setup. This concept was combined with a new approach to the photoacoustic normalization of LIBS. Also, it was possible to acquire statistically relevant amounts of data in a matter of seconds, showing its potential as a real-time optimization technique. On the same time axis, but at much lower fluences, LII was used with a similar methodology to quickly quantify and classify airborne particles of different compositions. For the first time, aerosol particles were evaluated on their LII susceptibility by using a fluence screening approach.}, language = {en} } @phdthesis{Kwesiga2022, author = {Kwesiga, George}, title = {Synthesis of isoflavonoids from African medicinal plants with activity against tropical infectious diseases}, doi = {10.25932/publishup-55906}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559069}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 175}, year = {2022}, abstract = {Two approaches for the synthesis of prenylated isoflavones were explored: the 2,3-oxidative rearrangement/cross metathesis approach, using hypervalent iodine reagents as oxidants and the Suzuki-Miyaura cross-coupling/cross metathesis approach. Three natural prenylated isoflavones: 5-deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7-methoxyebenosin (64), and non-natural analogues: 7,4′-dimethoxy-8,3′-diprenylisoflavone (126j) and 4′-hydroxy-7-methoxy-8,3′-diprenylisoflavone (128) were synthesized for the first time via the 2,3-oxidative rearrangement/cross metathesis approach, using mono- or diallylated flavanones as key intermediates. The reaction of flavanones with hypervalent iodine reagents afforded isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via a 2,3-dehydrogenation. This afforded the synthesis of 7,4′-dimethoxy-8-prenylflavone (127g), 7,4′-dimethoxy-8,3′-diprenylflavone (127j), 7,4′-dihydroxy-8,3′-diprenylflavone (129) and 4′-hydroxy-7-methoxy-8,3′-diprenylflavone (130), the non-natural regioisomers of 7-methoxyebenosin, 126j, erysubin F and 128 respectively. Three natural prenylated isoflavones: 3′-prenylbiochanin A (58), neobavaisoflavone (66) and 7-methoxyneobavaisoflavone (137) were synthesized for the first time using the Suzuki-Miyaura cross-coupling/cross metathesis approach. The structures of 3′-prenylbiochanin A (58) and 5-deoxy-3′-prenylbiochanin A (59) were confirmed by single crystal X-ray diffraction analysis. The 2,3-oxidative rearrangement approach appears to be limited to the substitution pattern on both rings A and B of the flavanone while the Suzuki-Miyaura cross-coupling approach appears to be the most suitable for the synthesis of simple isoflavones or prenylated isoflavones whose prenyl substituents or allyl groups, the substituents that are essential precursors for the prenyl side chains, can be regioselectively introduced after the construction of the isoflavone core. The chalcone-flavanone hybrids 146, 147 and 148, hybrids of the naturally occurring bioactive flavanones liquiritigenin-7-methyl ether, liquiritigenin and liquiritigenin-4′-methyl ether respectively were also synthesized for the first time, using Matsuda-Heck arylation and allylic/benzylic oxidation as key steps. The intermolecular interactions of 5-deoxy-3′-prenylbiochanin A (59) and its two closely related precursors 106a and 106b was investigated by single crystal and Hirshfeld surface analyses to comprehend their different physicochemical properties. The results indicate that the presence of strong intermolecular O-H···O hydrogen bonds and an increase in the number of π-stacking interactions increases the melting point and lowers the solubility of isoflavone derivatives. However, the strong intermolecular O-H···O hydrogen bonds have a greater effect than the π-stacking interactions. 5-Deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7,4′-dihydroxy-8,3′-diprenylflavone (129), were tested against three bacterial strains and one fungal pathogen. All the three compounds were inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 μM. The diprenylated isoflavone erysubin F (61) and its flavone isomer 129 showed in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 μM, respectively. 5-Deoxy-3′-prenylbiochanin A (59) was inactive against this MRSA strain. Erysubin F (61) and its flavone isomer 129 could serve as lead compounds for the development of new alternative drugs for the treatment of MRSA infections.}, language = {en} } @phdthesis{MichalikOnichimowska2022, author = {Michalik-Onichimowska, Aleksandra}, title = {Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry}, doi = {10.25932/publishup-55729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557298}, school = {Universit{\"a}t Potsdam}, pages = {v, 68}, year = {2022}, abstract = {Eine nachhaltigere chemische Industrie erfordert eine Minimierung der L{\"o}sungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgef{\"u}hrt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergr{\"o}ßerung des Volumens des Reaktionsmediums geht immer mit der Vergr{\"o}ßerung der Oberfl{\"a}che einher, die mit dem begrenzenden Gef{\"a}ß in Kontakt steht. Da das Volumen kubisch, w{\"a}hrend die Oberfl{\"a}che quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verh{\"a}ltnis nicht linear zu. Viele an der Grenzfl{\"a}che zwischen Oberfl{\"a}che und Fl{\"u}ssigkeit auftretende Ph{\"a}nomene k{\"o}nnen die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung f{\"u}hrt. Die Anwendung von schwebenden Tropfen als beh{\"a}lterlose Reaktionsgef{\"a}ße bietet eine vielversprechende M{\"o}glichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer f{\"u}r die Echtzeit{\"u}berwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgef{\"a}ße fungieren. Das Design des Systems umfasst die ber{\"u}hrungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verst{\"a}ndnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verst{\"a}ndnis dieses Ph{\"a}nomens ist entscheidend, um den Effekt der zeitlichen und r{\"a}umlichen Aufl{\"o}sung der erzeugten Ionenwolke zu verstehen, die die Aufl{\"o}sung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzfl{\"a}chenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollst{\"a}ndig ber{\"u}cksichtigen. F{\"u}r die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulsl{\"a}ngen untersucht, n{\"a}mlich im ns- und µs-Bereich. Die Bestrahlung {\"u}ber µs-Laserpulse bietet gegen{\"u}ber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es erm{\"o}glichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz f{\"u}hrt zu weniger ausgepr{\"a}gten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld r{\"u}ckgeschlagen, was zum Verlust der Probe f{\"u}hren w{\"u}rde; iii) die milde Laserbestrahlung f{\"u}hrt zu einer besseren r{\"a}umlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Aufl{\"o}sung der detektierten Ionenpakete f{\"u}hrt. Schließlich erm{\"o}glicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der N{\"a}he des Tropfens erm{\"o}glicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu f{\"u}hren. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Molek{\"u}le als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgef{\"u}hrt und online {\"u}berwacht. F{\"u}r eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50\% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten.}, language = {en} } @article{FigueroaCamposGKTKruizengaSaguTchewonpietal.2022, author = {Figueroa Campos, Gustavo Adolfo and G. K. T. Kruizenga, Johannes and Sagu Tchewonpi, Sorel and Schwarz, Steffen and Homann, Thomas and Taubert, Andreas and Rawel, Harshadrai Manilal}, title = {Effect of the post-harvest processing on protein modification in green coffee beans by phenolic compounds}, series = {Foods : open access journal}, volume = {11}, journal = {Foods : open access journal}, edition = {2}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2304-8158}, doi = {10.3390/foods11020159}, pages = {19}, year = {2022}, abstract = {The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4-8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma. View Full-Text}, language = {en} } @phdthesis{Gaebert2022, author = {G{\"a}bert, Chris}, title = {Light-responsive polymer systems aiming towards programmable friction}, doi = {10.25932/publishup-55338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553380}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 108, XXVI}, year = {2022}, abstract = {The development of novel programmable materials aiming to control friction in real-time holds potential to facilitate innovative lubrication solutions for reducing wear and energy losses. This work describes the integration of light-responsiveness into two lubricating materials, silicon oils and polymer brush surfaces. The first part focusses on the assessment on 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-A) and, in particular, on the variability of rheological properties and the implications that arise with UV-light as external trigger. The applied rheometer setup contains an UV-transparent quartz-plate, which enables radiation and simultaneous measurement of the dynamic moduli. UV-A radiation (354 nm) triggers the cycloaddition reaction between the terminal functionalities of linear PDMS, resulting in chain extension. The newly-formed anthracene dimers cleave by UV-C radiation (254 nm) or at elevated temperatures (T > 130 °C). The sequential UV-A radiation and thermal reprogramming over three cycles demonstrate high conversions and reproducible programming of rheological properties. In contrast, the photochemical back reaction by UV-C is incomplete and can only partially restore the initial rheological properties. The dynamic moduli increase with each cycle in photochemical programming, presumably resulting from a chain segment re-arrangement as a result of the repeated partial photocleavage and subsequent chain length-dependent dimerization. In addition, long periods of radiation cause photooxidative degradation, which damages photo-responsive functions and consequently reduces the programming range. The absence of oxygen, however, reduces undesired side reactions. Anthracene-functionalized PDMS and native PDMS mix depending on the anthracene ester content and chain length, respectively, and allow fine-tuning of programmable rheological properties. The work shows the influence of mixing conditions during the photoprogramming step on the rheological properties, indicating that material property gradients induced by light attenuation along the beam have to be considered. Accordingly, thin lubricant films are suggested as potential application for light-programmable silicon fluids. The second part compares strategies for the grafting of spiropyran (SP) containing copolymer brushes from Si wafers and evaluates the light-responsiveness of the surfaces. Pre-experiments on the kinetics of the thermally initiated RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and spiropyran acrylate (SPA) in solution show, first, a strong retardation by SP and, second, the dependence of SPA polymerization on light. Surprisingly, the copolymerization of SPA is inhibited in the dark. These findings contribute to improve the synthesis of polar, spiropyran-containing copolymers. The comparison between initiator systems for the grafting-from approach indicates PET-RAFT superior to thermally initiated RAFT, suggesting a more efficient initiation of surface-bound CTA by light. Surface-initiated polymerization via PET-RAFT with an initiator system of EosinY (EoY) and ascorbic acid (AscA) facilitates copolymer synthesis from HEA and 5-25 mol\% SPA. The resulting polymer film with a thickness of a few nanometers was detected by atomic force microscopy (AFM) and ellipsometry. Water contact angle (CA) measurements demonstrate photo-switchable surface polarity, which is attributed to the photoisomerization between non-polar spiropyran and zwitterionic merocyanine isomer. Furthermore, the obtained spiropyran brushes show potential for further studies on light-programmable properties. In this context, it would be interesting to investigate whether swollen spiropyran-containing polymers change their configuration and thus their film thickness under the influence of light. In addition, further experiments using an AFM or microtribometer should evaluate whether light-programmable solvation enables a change in frictional properties between polymer brush surfaces.}, language = {en} } @phdthesis{Neumann2022, author = {Neumann, Christian}, title = {Development of functionalized waterborne coatings for the production of multifunctional microapsules}, pages = {127}, year = {2022}, language = {en} } @phdthesis{Flatken2022, author = {Flatken, Marion A.}, title = {The early stages of halide perovskites thin film formation}, doi = {10.25932/publishup-55259}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-552599}, school = {Universit{\"a}t Potsdam}, pages = {VI, 144}, year = {2022}, abstract = {As climate change worsens, there is a growing urgency to promote renewable energies and improve their accessibility to society. Here, solar energy harvesting is of particular importance. Currently, metal halide perovskite (MHP) solar cells are indispensable in future solar energy generation research. MHPs are crystalline semiconductors increasingly relevant as low-cost, high-performance materials for optoelectronics. Their processing from solution at low temperature enables easy fabrication of thin film elements, encompassing solar cells and light-emitting diodes or photodetectors. Understanding the coordination chemistry of MHPs in their precursor solution would allow control over the thin film crystallization, the material properties and the final device performance. In this work, we elaborate on the key parameters to manipulate the precursor solution with the long-term objective of enabling systematic process control. We focus on the nanostructural characterization of the initial arrangements of MHPs in the precursor solutions. Small-angle scattering is particularly well suited for measuring nanoparticles in solution. This technique proved to be valuable for the direct analyzes of perovskite precursor solutions in standard processing concentrations without causing radiation damage. We gain insights into the chemical nature of widely used precursor structures such as methylammonium lead iodide (MAPbI3), presenting first insights into the complex arrangements and interaction within this precursor state. Furthermore, we transfer the preceding results to other more complex perovskite precursors. The influence of compositional engineering is investigated using the addition of alkali cations as an example. As a result, we propose a detailed working mechanism on how the alkali cations suppress the formation of intermediate phases and improve the quality of the crystalline thin film. In addition, we investigate the crystallization process of a tin-based perovskite composition (FASnI3) under the influence of fluoride chemistry. We prove that the frequently used additive, tin fluoride (SnF2), selectively binds undesired oxidized tin (Sn(IV)) in the precursor solution. This prevents its incorporation into the actual crystal structure and thus reduces the defect density of the material. Furthermore, SnF2 leads to a more homogeneous crystal growth process, which results in improved crystal quality of the thin film material. In total, this study provides a detailed characterization of the complex system of perovskite precursor chemistry. We thereby cover relevant parameters for future MHP solar cell process control, such as (I) the environmental impact based on concentration and temperature (II) the addition of counter ions to reduce the diffuse layer surrounding the precursor nanostructures and (III) the targeted use of additives to eliminate unwanted components selectively and to ensure a more homogeneous crystal growth.}, language = {en} } @phdthesis{Bastian2022, author = {Bastian, Philipp U.}, title = {Core-shell upconversion nanoparticles - investigation of dopant intermixing and surface modification}, doi = {10.25932/publishup-55160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-551607}, school = {Universit{\"a}t Potsdam}, pages = {XII, 108, xxiii}, year = {2022}, abstract = {Frequency upconversion nanoparticles (UCNPs) are inorganic nanocrystals capable to up-convert incident photons of the near-infrared electromagnetic spectrum (NIR) into higher energy photons. These photons are re-emitted in the range of the visible (Vis) and even ultraviolet (UV) light. The frequency upconversion process (UC) is realized with nanocrystals doped with trivalent lanthanoid ions (Ln(III)). The Ln(III) ions provide the electronic (excited) states forming a ladder-like electronic structure for the Ln(III) electrons in the nanocrystals. The absorption of at least two low energy photons by the nanoparticle and the subsequent energy transfer to one Ln(III) ion leads to the promotion of one Ln(III) electron into higher excited electronic states. One high energy photon will be emitted during the radiative relaxation of the electron in the excited state back into the electronic ground state of the Ln(III) ion. The excited state electron is the result of the previous absorption of at least two low energy photons. The UC process is very interesting in the biological/medical context. Biological samples (like organic tissue, blood, urine, and stool) absorb high-energy photons (UV and blue light) more strongly than low-energy photons (red and NIR light). Thanks to a naturally occurring optical window, NIR light can penetrate deeper than UV light into biological samples. Hence, UCNPs in bio-samples can be excited by NIR light. This possibility opens a pathway for in vitro as well as in vivo applications, like optical imaging by cell labeling or staining of specific organic tissue. Furthermore, early detection and diagnosis of diseases by predictive and diagnostic biomarkers can be realized with bio-recognition elements being labeled to the UCNPs. Additionally, "theranostic" becomes possible, in which the identification and the treatment of a disease are tackled simultaneously. For this to succeed, certain parameters for the UCNPs must be met: high upconversion efficiency, high photoluminescence quantum yield, dispersibility, and dispersion stability in aqueous media, as well as availability of functional groups to introduce fast and easy bio-recognition elements. The UCNPs used in this work were prepared with a solvothermal decomposition synthesis yielding in particles with NaYF4 or NaGdF4 as host lattice. They have been doped with the Ln(III) ions Yb3+ and Er3+, which is only one possible upconversion pair. Their upconversion efficiency and photoluminescence quantum yield were improved by adding a passivating shell to reduce surface quenching. However, the brightness of core-shell UCNPs stays behind the expectations compared to their bulk material (being at least μm-sized particles). The core-shell structures are not clearly separated from each other, which is a topic in literature. Instead, there is a transition layer between the core and the shell structure, which relates to the migration of the dopants within the host lattice during the synthesis. The ion migration has been examined by time-resolved laser spectroscopy and the interlanthanoid resonance energy transfer (LRET) in the two different host lattices from above. The results are presented in two publications, which dealt with core-shell-shell structured nanoparticles. The core is doped with the LRET-acceptor (either Nd3+ or Pr3+). The intermediate shell serves as an insulation shell of pure host lattice material, whose shell thickness has been varied within one set of samples having the same composition, so that the spatial separation of LRET-acceptor and -donor changes. The outer shell with the same host lattice is doped with the LRET-donor (Eu3+). The effect of the increasing insulation shell thickness is significant, although the LRET cannot be suppressed completely. Next to the Ln(III) migration within a host lattice, various phase transfer reactions were investigated in order to subsequently perform surface modifications for bioapplications. One result out of this research has been published using a promising ligand, that equips the UCNP with bio-modifiable groups and has good potential for bio-medical applications. This particular ligand mimics natural occurring mechanisms of mussel protein adhesion and of blood coagulation, which is why the UCNPs are encapsulated very effectively. At the same time, bio-functional groups are introduced. In a proof-of-concept, the encapsulated UCNP has been coupled successfully with a dye (which is representative for a biomarker) and the system's photoluminescence properties have been investigated.}, language = {en} } @phdthesis{Luedecke2022, author = {L{\"u}decke, Nils}, title = {Bio-sourced adsorbing poly(2-oxazoline)s mimicking mussel glue proteins for antifouling applications}, doi = {10.25932/publishup-54983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549836}, school = {Universit{\"a}t Potsdam}, pages = {iii, 224}, year = {2022}, abstract = {Nature developed countless systems for many applications. In maritime environments, several organisms established extra-ordinary mechanisms to attach to surfaces. Over the past years, the scientific interest to employ those mechanisms for coatings and long-lasting adhering materials gained significant attention. This work describes the synthesis of bio-inspired adsorbing copoly(2-oxazoline)s for surface coatings with protein repelling effects, mimicking mussel glue proteins. From a set of methoxy substituted phenyl, benzyl, and cinnamyl acids, 2-oxazoline monomers were synthesized. All synthesized 2-oxazolines were analyzed by FT-IR spectroscopy, NMR spectroscopy, and EI mass spectrometry. With those newly synthesized 2-oxazoline monomers and 2-ethyl-2-oxazoline, kinetic studies concerning homo- and copolymerization in a microwave reactor were conducted. The success of the polymerization reactions was demonstrated by FT-IR spectroscopy, NMR spectroscopy, MALDI-TOF mass spectrometry, and size exclusion chromatography (SEC). The copolymerization of 2-ethyl-2-oxazoline with a selection of methoxy-substituted 2-oxazolines resulted in water-soluble copolymers. To release the adsorbing catechol and cationic units, the copoly(2-oxazoline)s were modified. The catechol units were (partially) released by a methyl aryl ether cleavage reaction. A subsequent partial acidic hydrolysis of the ethyl unit resulted in mussel glue protein-inspired catechol and cation-containing copolymers. The modified copolymers were analyzed by NMR spectroscopy, UV-VIS spectroscopy, and SEC. The catechol- and cation-containing copolymers and their precursors were examined by a Quartz Crystal Microbalance with Dissipation (QCM-D), so study the adsorption performance on gold, borosilicate, iron, and polystyrene surfaces. An exemplary study revealed that a catechol and cation-containing copoly(2-oxazoline)-coated gold surface exhibits strong protein repelling properties.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @phdthesis{Heyne2022, author = {Heyne, Benjamin}, title = {Design and Synthesis of Highly Efficient InPZnS/ZnSe/ZnS Multishell Quantum Dots and Phase Transfer via Ligand Exchange}, school = {Universit{\"a}t Potsdam}, pages = {102,LII}, year = {2022}, language = {en} } @phdthesis{Nie2022, author = {Nie, Yan}, title = {Modulating keratinocyte and induced pluripotent stem cell behavior by microenvironment design or temperature control}, pages = {xiv, 100}, year = {2022}, abstract = {Under the in vivo condition, a cell is continually interacting with its surrounding microenvironment, which is composed of its neighboring cells and the extracellular matrix (ECM). These components generate and transmit the microenvironmental signals to regulate the fate and function of the target cells. Except the signals from the microenvironment, stimuli from the ambient environment, such as temperature changes, also play an important in modulating the cell behaviors, which are considered as regulators from the macroenvironment. In this regard, recapitulation of these environmental factors to steer cell function will be of crucial importance for therapeutic purposes and tissue regeneration. Although the role of a variety of environmental factors has been evaluated, it is still challenging to identify and provide the appropriate factors, which are required for optimizing the survival of cells and for ensuring effective cell functions. Thus, in vitro recreating the environmental factors that are present in the extracellular environment would help to understand the mechanism of how cells sense and process those environmental signals. In this context, this thesis is aimed to harness these environmental parameters to guide cell responses. Here, human induced pluripotent stem cells (hiPSCs) and human keratinocytes (KTCs), HaCaT cells, were used to investigate the impact of signals from the microenvironment or stimuli from the macroenvironment. Firstly, polydopamine (PDA) or chitosan (CS) modifications were applied to generate different substrate surfaces for hiPSCs and KTCs (Chapter 4 to Chapter 6). Our results showed that the PDA modification was efficient to increase the cell-substrate adhesion and consequently promoted cell spreading. While CS modification was able to decrease the cell-substrate adhesion and enhance the cell-cell interaction, which enabled the morphology shift from monolayered cells to multicellular spheroids. The quantitative result was acquired using the atomic force microscopy (AFM)-based single-cell force spectroscopy. The balance between the cell-substrate and cell-cell adhesion yielded a net force, which determined the preference of the cell to adhere to its neighboring cells or to the substrate. The difference in the adhesive behaviors further affected the cellular function, such as the proliferation and differentiation potential of both hiPSCs and HaCaT cells. Next, the cyclic temperature changes (ΔT) were selected here to study the influence of macroenvironmental stimuli on hiPSCs and KTCs (Chapter 7 and Chapter 8). The macroenvironmental temperature ranging from 10.0 ± 0.1 °C to 37.0 ± 0.1 °C was achieved using a thermal chamber equipped with a temperature controller. This temperature range was selected to explore the responses of hiPSCs to the extreme environments, while a temperature variation between 25.0 ± 0.1 °C and 37.0 ± 0.1 °C was applied to mimic the ambient temperature variations experienced by the skin epithelial KTCs. The ΔT led to cell stiffening in both hiPSCs and HaCaT cells in a cytoskeleton-dependent manner, which was measured by AFM. Specifically, in hiPSCs, the cell stiffening was resulted from the rearrangement of the actin skeleton; in HaCaT cells, was due to the difference of the Keratin (KRT) filaments. Except for inducing cell hardening, ΔT also caused differences in the protein expression profiles in hiPSCs or HaCaT cells, compared to those without ΔT treatment, which might be attributed to the alterations in their cytoskeleton structures. To sum up, the results of the thesis demonstrated how individual factors from the micro-/macro-environment can be harnessed to modulate the behaviors of hiPSCs and HaCaT cells. Engineering the microenvironmental cues using surface modification and exploiting the macroenvironmental stimuli through temperature control were identified as precise and potent approaches to steer hiPSC and HaCaT cell behaviors. The application of AFM served as a non-invasive and real-time monitoring platform to trace the change in cell topography and mechanics induced by the environmental signals, which provide novel insights into the cell-environment interactions.}, language = {en} } @phdthesis{Youk2022, author = {Youk, Sol}, title = {Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage}, doi = {10.25932/publishup-53909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-539098}, school = {Universit{\"a}t Potsdam}, pages = {145}, year = {2022}, abstract = {The world energy consumption has constantly increased every year due to economic development and population growth. This inevitably caused vast amount of CO2 emission, and the CO2 concentration in the atmosphere keeps increasing with economic growth. To reduce CO2 emission, various methods have been developed but there are still many bottlenecks to be solved. Solvents easily absorbing CO2 such as monoethanol-amine (MEA) and diethanolamine, for example, have limitations of solvent loss, amine degradation, vulnerability to heat and toxicity, and the high cost of regeneration which is especially caused due to chemisorption process. Though some of these drawbacks can be compensated through physisorption with zeolites and metal-organic frameworks (MOFs) by displaying significant adsorption selectivity and capacity even in ambient conditions, limitations for these materials still exist. Zeolites demand relatively high regeneration energy and have limited adsorption kinetics due to the exceptionally narrow pore structure. MOFs have low stability against heat and moisture and high manufacturing cost. Nanoporous carbons have recently received attention as an attractive functional porous material due to their unique properties. These materials are crucial in many applications of modern science and industry such as water and air purification, catalysis, gas separation, and energy storage/conversion due to their high chemical and thermal stability, and in particular electronic conductivity in combination with high specific surface areas. Nanoporous carbons can be used to adsorb environmental pollutants or small gas molecules such as CO2 and to power electrochemical energy storage devices such as batteries and fuel cells. In all fields, their pore structure or electrical properties can be modified depending on their purposes. This thesis provides an in-depth look at novel nanoporous carbons from the synthetic and the application point of view. The interplay between pore structure, atomic construction, and the adsorption properties of nanoporous carbon materials are investigated. Novel nanoporous carbon materials are synthesized by using simple precursor molecules containing heteroatoms through a facile templating method. The affinity, and in turn the adsorption capacity, of carbon materials toward polar gas molecules (CO2 and H2O) is enhanced by the modification of their chemical construction. It is also shown that these properties are important in electrochemical energy storage, here especially for supercapacitors with aqueous electrolytes which are basically based on the physisorption of ions on carbon surfaces. This shows that nanoporous carbons can be a "functional" material with specific physical or chemical interactions with guest species just like zeolites and MOFs. The synthesis of sp2-conjugated materials with high heteroatom content from a mixture of citrazinic acid and melamine in which heteroatoms are already bonded in specific motives is illustrated. By controlling the removal procedure of the salt-template and the condensation temperature, the role of salts in the formation of porosity and as coordination sites for the stabilization of heteroatoms is proven. A high amount of nitrogen of up to 20 wt. \%, oxygen contents of up to 19 wt.\%, and a high CO2/N2 selectivity with maximum CO2 uptake at 273 K of 5.31 mmol g-1 are achieved. Besides, the further controlled thermal condensation of precursor molecules and advanced functional properties on applications of the synthesized porous carbons are described. The materials have different porosity and atomic construction exhibiting a high nitrogen content up to 25 wt. \% as well as a high porosity with a specific surface area of more than 1800 m2 g-1, and a high performance in selective CO2 gas adsorption of 62.7. These pore structure as well as properties of surface affect to water adsorption with a remarkably high Qst of over 100 kJ mol-1 even higher than that of zeolites or CaCl2 well known as adsorbents. In addition to that, the pore structure of HAT-CN-derived carbon materials during condensation in vacuum is fundamentally understood which is essential to maximize the utilization of porous system in materials showing significant difference in their pore volume of 0.5 cm3 g-1 and 0.25 cm3 g-1 without and with vacuum, respectively. The molecular designs of heteroatom containing porous carbon derived from abundant and simple molecules are introduced in the presented thesis. Abundant precursors that already containing high amount of nitrogen or oxygen are beneficial to achieve enhanced interaction with adsorptives. The physical and chemical properties of these heteroatom-doped porous carbons are affected by mainly two parameters, that is, the porosity from the pore structure and the polarity from the atomic composition on the surface. In other words, controlling the porosity as well as the polarity of the carbon materials is studied to understand interactions with different guest species which is a fundamental knowledge for the utilization on various applications.}, language = {en} } @phdthesis{Brandi2022, author = {Brandi, Francesco}, title = {Integrated biorefinery in continuous flow systems using sustainable heterogeneous catalysts}, doi = {10.25932/publishup-53766}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-537660}, school = {Universit{\"a}t Potsdam}, pages = {xii, 201}, year = {2022}, abstract = {The negative impact of crude oil on the environment has led to a necessary transition toward alternative, renewable, and sustainable resources. In this regard, lignocellulosic biomass (LCB) is a promising renewable and sustainable alternative to crude oil for the production of fine chemicals and fuels in a so-called biorefinery process. LCB is composed of polysaccharides (cellulose and hemicellulose), as well as aromatics (lignin). The development of a sustainable and economically advantageous biorefinery depends on the complete and efficient valorization of all components. Therefore, in the new generation of biorefinery, the so-called biorefinery of type III, the LCB feedstocks are selectively deconstructed and catalytically transformed into platform chemicals. For this purpose, the development of highly stable and efficient catalysts is crucial for progress toward viability in biorefinery. Furthermore, a modern and integrated biorefinery relies on process and reactor design, toward more efficient and cost-effective methodologies that minimize waste. In this context, the usage of continuous flow systems has the potential to provide safe, sustainable, and innovative transformations with simple process integration and scalability for biorefinery schemes. This thesis addresses three main challenges for future biorefinery: catalyst synthesis, waste feedstock valorization, and usage of continuous flow technology. Firstly, a cheap, scalable, and sustainable approach is presented for the synthesis of an efficient and stable 35 wt.-\% Ni catalyst on highly porous nitrogen-doped carbon support (35Ni/NDC) in pellet shape. Initially, the performance of this catalyst was evaluated for the aqueous phase hydrogenation of LCB-derived compounds such as glucose, xylose, and vanillin in continuous flow systems. The 35Ni/NDC catalyst exhibited high catalytic performances in three tested hydrogenation reactions, i.e., sorbitol, xylitol, and 2-methoxy-4-methylphenol with yields of 82 mol\%, 62 mol\%, and 100 mol\% respectively. In addition, the 35Ni/NDC catalyst exhibited remarkable stability over a long time on stream in continuous flow (40 h). Furthermore, the 35Ni/NDC catalyst was combined with commercially available Beta zeolite in a dual-column integrated process for isosorbide production from glucose (yield 83 mol\%). Finally, 35Ni/NDC was applied for the valorization of industrial waste products, namely sodium lignosulfonate (LS) and beech wood sawdust (BWS) in continuous flow systems. The LS depolymerization was conducted combining solvothermal fragmentation of water/alcohol mixtures (i.e.,methanol/water and ethanol/water) with catalytic hydrogenolysis/hydrogenation (SHF). The depolymerization was found to occur thermally in absence of catalyst with a tunable molecular weight according to temperature. Furthermore, the SHF generated an optimized cumulative yield of lignin-derived phenolic monomers of 42 mg gLS-1. Similarly, a solvothermal and reductive catalytic fragmentation (SF-RCF) of BWS was conducted using MeOH and MeTHF as a solvent. In this case, the optimized total lignin-derived phenolic monomers yield was found of 247 mg gKL-1.}, language = {en} }