@article{PaschkeStillerRybergetal.2012, author = {Paschke, Marco and Stiller, Manfred and Ryberg, Trond and Weber, Michael H.}, title = {The shallow P-velocity structure of the southern Dead Sea basin derived from near-vertical incidence reflection seismic data in project DESIRE}, series = {Geophysical journal international}, volume = {188}, journal = {Geophysical journal international}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, organization = {DESIRE Grp}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2011.05270.x}, pages = {524 -- 534}, year = {2012}, abstract = {As a part of the DEad Sea Integrated REsearch (DESIRE) project a near-vertical incidence reflection (NVR) experiment with a profile length of 122 km was completed in spring 2006. The profile crossed the southern Dead Sea basin (DSB), a pull-apart basin due to the strike-slip motion along the Dead Sea Transform (DST). The DST with a total displacement of 107 km since about 18 Ma is part of a left-lateral fault system which connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a distance of about 1100 km. The seismic experiment comprises 972 source locations and 1045 receiver locations. Each source was recorded by similar to 180 active receivers and a field data set with 175 000 traces was created. From this data set, 124 444 P-wave first-break traveltimes have been picked. With these traveltimes a tomographic inversion was carried out, resulting in a 2-D P-wave velocity model with a rms error of 20.9 ms. This model is dominated by a low-velocity region associated with the DSB. Within the DSB, the model shows clearly the position of the Lisan salt diapir, identified by a high-velocity zone. A further feature is an unexpected laterally low-velocity zone with P-velocities of 3 km s1 embedded in regions with 4 km s1 in the shallow part on the west side of the DSB. Another observation is an anticlinal structure west of the DSB interpretated to the related Syrian arc fold belt.}, language = {en} }