@phdthesis{Voss2007, author = {Voß, Anja}, title = {Untersuchung und Modellierung der Stickstoff- und Phosphorumsatz- und Transportprozesse in mesoskaligen Einzugsgebieten des Tieflandes am Beispiel von Nuthe, Hammerfließ und Stepenitz}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15481}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Ziel dieser Arbeit war es, die Stickstoff- und Phosphorprozesse im nordostdeutschen Tiefland detailliert zu untersuchen und Handlungsoptionen hinsichtlich der Landnutzung zur nachhaltigen Steuerung der Stickstoff- und Phosphoreintr{\"a}ge in die Fließgew{\"a}sser aufzuzeigen. Als Grundvoraussetzung f{\"u}r die Modellierung des N{\"a}hrstoffhaushaltes mussten zun{\"a}chst die hydrologischen Prozesse und die Abfl{\"u}sse f{\"u}r die Einzugsgebiete validiert werden. Daf{\"u}r wurde in dieser Arbeit das {\"o}kohydrologische Modell SWIM verwendet. Die Abflussmodellierung umfasste den Zeitraum 1991 - 2000. Die Ergebnisse dazu zeigen, dass SWIM in der Lage war, die hydrologischen Prozesse in den Untersuchungsgebieten ad{\"a}quat wiederzugeben. Auf der Grundlage der Modellierung des Wasserhaushaltes wurden mit SWIM die Stoffumsatzprozesse f{\"u}r den Zeitraum 1996 - 2000 simuliert. Um dabei besonders das Prozessgeschehen im Tiefland zu ber{\"u}cksichtigen, war die Erweiterung von SWIM um einen Ammonium-Pool mit dessen Umsatzprozessen erforderlich. Außerdem wurde der Prozess der N{\"a}hrstoffversickerung so erg{\"a}nzt, dass neben Nitrat auch Ammonium und Phosphat durch das gesamte Bodenprofil verlagert und {\"u}ber die Abflusskomponenten zum Gebietsauslass transportiert werden k{\"o}nnen. Mit diesen Modellerweiterungen konnten die Stickstoff und Phosphorprozesse in den Untersuchungsgebieten gut abgebildet werden. Mit dem so validierten Modell wurden weitere Anwendungen erm{\"o}glicht. N{\"a}hrstoffsimulationen f{\"u}r den Zeitraum 1981 bis 2000 dienten der Untersuchung des abnehmenden Trends in den N{\"a}hrstoffkonzentrationen der Nuthe. Die Untersuchungsergebnisse lassen deutlich erkennen, dass sich die Konzentrationen nach 1990 haupts{\"a}chlich auf Grund der Reduzierung der Eintr{\"a}ge aus punktf{\"o}rmigen Quellen und Rieselfeldern verringert haben. Weitere Modellrechnungen zur Herkunft der N{\"a}hrstoffe haben ergeben, dass Nitrat {\"u}berwiegend aus diffusen Quellen, Ammonium und Phosphat dagegen aus punktf{\"o}rmigen Quellen stammen. Als besonders sensitiv auf die Modellergebnisse haben sich die Parameter zu Landnutzung und -management und die Durchwurzelungstiefe der Pflanzen herausgestellt. Abschließend wurden verschiedene Landnutzungsszenarien angewendet. Die Ergebnisse zu den Szenariorechnungen zeigen, dass fast alle vorgegebenen Landnutzungsszenarien zu einer Verringerung der Stickstoff- bzw. Phosphoremissionen f{\"u}hrten. Die Anwendung von Szenarien, die alle relevanten Zielvorgaben und Empfehlungen zum Ressourcenschutz ber{\"u}cksichtigen, zeigen die gr{\"o}ßten Ver{\"a}nderungen.}, language = {de} } @phdthesis{Kneis2007, author = {Kneis, David}, title = {A water quality model for shallow river-lake systems and its application in river basin management}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14647}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work documents the development and application of a new model for simulating mass transport and turnover in rivers and shallow lakes. The simulation tool called 'TRAM' is intended to complement mesoscale eco-hydrological catchment models in studies on river basin management. TRAM aims at describing the water quality of individual water bodies, using problem- and scale-adequate approaches for representing their hydrological and ecological characteristics. The need for such flexible water quality analysis and prediction tools is expected to further increase during the implementation of the European Water Framework Directive (WFD) as well as in the context of climate change research. The developed simulation tool consists of a transport and a reaction module with the latter being highly flexible with respect to the description of turnover processes in the aquatic environment. Therefore, simulation approaches of different complexity can easily be tested and model formulations can be chosen in consideration of the problem at hand, knowledge of process functioning, and data availability. Consequently, TRAM is suitable for both heavily simplified engineering applications as well as scientific ecosystem studies involving a large number of state variables, interactions, and boundary conditions. TRAM can easily be linked to catchment models off-line and it requires the use of external hydrodynamic simulation software. Parametrization of the model and visualization of simulation results are facilitated by the use of geographical information systems as well as specific pre- and post-processors. TRAM has been developed within the research project 'Management Options for the Havel River Basin' funded by the German Ministry of Education and Research. The project focused on the analysis of different options for reducing the nutrient load of surface waters. It was intended to support the implementation of the WFD in the lowland catchment of the Havel River located in North-East Germany. Within the above-mentioned study TRAM was applied with two goals in mind. In a first step, the model was used for identifying the magnitude as well as spatial and temporal patterns of nitrogen retention and sediment phosphorus release in a 100~km stretch of the highly eutrophic Lower Havel River. From the system analysis, strongly simplified conceptual approaches for modeling N-retention and P-remobilization in the studied river-lake system were obtained. In a second step, the impact of reduced external nutrient loading on the nitrogen and phosphorus concentrations of the Havel River was simulated (scenario analysis) taking into account internal retention/release. The boundary conditions for the scenario analysis such as runoff and nutrient emissions from river basins were computed by project partners using the catchment models SWIM and ArcEGMO-Urban. Based on the output of TRAM, the considered options of emission control could finally be evaluated using a site-specific assessment scale which is compatible with the requirements of the WFD. Uncertainties in the model predictions were also examined. According to simulation results, the target of the WFD -- with respect to total phosphorus concentrations in the Lower Havel River -- could be achieved in the medium-term, if the full potential for reducing point and non-point emissions was tapped. Furthermore, model results suggest that internal phosphorus loading will ease off noticeably until 2015 due to a declining pool of sedimentary mobile phosphate. Mass balance calculations revealed that the lakes of the Lower Havel River are an important nitrogen sink. This natural retention effect contributes significantly to the efforts aimed at reducing the river's nitrogen load. If a sustainable improvement of the river system's water quality is to be achieved, enhanced measures to further reduce the immissions of both phosphorus and nitrogen are required.}, language = {en} }