@misc{MuellerStollCasseletal.2017, author = {M{\"u}ller, Steffen and Stoll, Josefine and Cassel, Michael and Mayer, Frank}, title = {Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395261}, pages = {9}, year = {2017}, abstract = {In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [\%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3-1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment.}, language = {en} } @misc{WippertWiebking2018, author = {Wippert, Pia-Maria and Wiebking, Christine}, title = {Stress and Alterations in the Pain Matrix}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {438}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412058}, pages = {11}, year = {2018}, abstract = {The genesis of chronic pain is explained by a biopsychosocial model. It hypothesizes an interdependency between environmental and genetic factors provoking aberrant long-term changes in biological and psychological regulatory systems. Physiological effects of psychological and physical stressors may play a crucial role in these maladaptive processes. Specifically, long-term demands on the stress response system may moderate central pain processing and influence descending serotonergic and noradrenergic signals from the brainstem, regulating nociceptive processing at the spinal level. However, the underlying mechanisms of this pathophysiological interplay still remain unclear. This paper aims to shed light on possible pathways between physical (exercise) and psychological stress and the potential neurobiological consequences in the genesis and treatment of chronic pain, highlighting evolving concepts and promising research directions in the treatment of chronic pain. Two treatment forms (exercise and mindfulness-based stress reduction as exemplary therapies), their interaction, and the dose-response will be discussed in more detail, which might pave the way to a better understanding of alterations in the pain matrix and help to develop future prevention and therapeutic concepts}, language = {en} } @misc{AppiahDwomohMuellerHadzicetal.2017, author = {Appiah-Dwomoh, Edem Korkor and M{\"u}ller, Steffen and Hadzic, Miralem and Mayer, Frank}, title = {Star Excursion Balance Test in young athletes with back pain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400441}, pages = {11}, year = {2017}, abstract = {The Star Excursion Balance Test (SEBT) is effective in measuring dynamic postural control (DPC). This research aimed to determine whether DPC measured by the SEBT in young athletes (YA) with back pain (BP) is different from those without BP (NBP). 53 BP YA and 53 NBP YA matched for age, height, weight, training years, training sessions/week and training minutes/session were studied. Participants performed 4 practice trials after which 3 measurements in the anterior, posteromedial and posterolateral SEBT reach directions were recorded. Normalized reach distance was analyzed using the mean of all 3 measurements. There was no statistical significant difference (p > 0.05) between the reach distance of BP (87.2 ± 5.3, 82.4 ± 8.2, 78.7 ± 8.1) and NBP (87.8 ± 5.6, 82.4 ± 8.0, 80.0 ± 8.8) in the anterior, posteromedial and posterolateral directions respectively. DPC in YA with BP, as assessed by the SEBT, was not different from NBP YA.}, language = {en} }