@article{KrstićWeidlingPetrovicetal.2016, author = {Krstić, Miloš and Weidling, Stefan and Petrovic, Vladimir and Sogomonyan, Egor S.}, title = {Enhanced architectures for soft error detection and correction in combinational and sequential circuits}, series = {Microelectronics reliability}, volume = {56}, journal = {Microelectronics reliability}, publisher = {Elsevier}, address = {Oxford}, issn = {0026-2714}, doi = {10.1016/j.microrel.2015.10.022}, pages = {212 -- 220}, year = {2016}, abstract = {In this paper two new methods for the design of fault-tolerant pipelined sequential and combinational circuits, called Error Detection and Partial Error Correction (EDPEC) and Full Error Detection and Correction (FEDC), are described. The proposed methods are based on an Error Detection Logic (EDC) in the combinational circuit part combined with fault tolerant memory elements implemented using fault tolerant master-slave flip-flops. If a transient error, due to a transient fault in the combinational circuit part is detected by the EDC, the error signal controls the latching stage of the flip-flops such that the previous correct state of the register stage is retained until the transient error disappears. The system can continue to work in its previous correct state and no additional recovery procedure (with typically reduced clock frequency) is necessary. The target applications are dataflow processing blocks, for which software-based recovery methods cannot be easily applied. The presented architectures address both single events as well as timing faults of arbitrarily long duration. An example of this architecture is developed and described, based on the carry look-ahead adder. The timing conditions are carefully investigated and simulated up to the layout level. The enhancement of the baseline architecture is demonstrated with respect to the achieved fault tolerance for the single event and timing faults. It is observed that the number of uncorrected single events is reduced by the EDPEC architecture by 2.36 times compared with previous solution. The FEDC architecture further reduces the number of uncorrected events to zero and outperforms the Triple Modular Redundancy (TMR) with respect to correction of timing faults. The power overhead of both new architectures is about 26-28\% lower than the TMR. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchleglDittmerHoffmannetal.2018, author = {Schlegl, Sandra and Dittmer, Nina and Hoffmann, Svenja and Voderholzer, Ulrich}, title = {Self-reported quantity, compulsiveness and motives of exercise in patients with eating disorders and healthy controls}, series = {Journal of eating disorders}, volume = {6}, journal = {Journal of eating disorders}, publisher = {BMC}, address = {London}, issn = {2050-2974}, doi = {10.1186/s40337-018-0202-6}, pages = {10}, year = {2018}, abstract = {Background: Compulsive exercise (CE) is a frequent symptom in patients with eating disorders (EDs). It includes, in addition to quantitatively excessive exercise behaviour, a driven aspect and specific motives of exercise. CE is generally associated with worse therapy outcomes. The aims of the study were to compare self-reported quantity of exercise, compulsiveness of exercise as well as motives for exercise between patients with anorexia nervosa (AN), bulimia nervosa (BN) and healthy controls (HC). Additionally, we wanted to explore predictors of compulsive exercise (CE) in each group. Methods: We investigated 335 female participants (n = 226 inpatients, n = 109 HC) and assessed self-reported quantity of exercise, compulsiveness of exercise (Compulsive Exercise Test), motives for exercise (Exercise Motivations Inventory-2), ED symptoms (Eating Disorder Inventory-2), obsessive-compulsiveness (Obsessive-Compulsive Inventory-Revised), general psychopathology (Brief Symptom Inventory-18) and depression (Beck Depression Inventory-2). Results: Both patients with AN and BN exercised significantly more hours per week and showed significantly higher CE than HC; no differences were found between patients with AN and BN. Patients with EDs and HC also partly varied in motives for exercise. Specific motives were enjoyment, challenge, recognition and weight management in patients with EDs in contrast to ill-health avoidance and affiliation in HC. Patients with AN and BN only differed in regard to exercise for appearance reasons in which patients with BN scored higher. The most relevant predictor of CE across groups was exercise for weight and shape reasons. Conclusions: Exercise behaviours and motives differ between patients with EDs and HC. CE was pronounced in both patients with AN and BN. Therefore, future research should focus not only on CE in patients with AN, but also on CE in patients with BN. Similarities in CE in patients with AN and BN support a transdiagnostic approach during the development of interventions specifically targeting CE in patients with EDs.}, language = {en} }