@misc{JohnsonRammKappeletal.2015, author = {Johnson, Kim L. and Ramm, Sascha and Kappel, Christian and Ward, Sally and Leyser, Ottoline and Sakamoto, Tomoaki and Kurata, Tetsuya and Bevan, Michael W. and Lenhard, Michael}, title = {The tinkerbell (tink) mutation identifies the dual-specificity MAPK phosphatase INDOLE- 3-BUTYRIC ACID-RESPONSE5 (IBR5) as a novel regulator of organ size in Arabidopsis}, series = {PLoS ONE}, journal = {PLoS ONE}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410245}, pages = {17}, year = {2015}, abstract = {Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways.}, language = {en} } @misc{PowellLenhard2012, author = {Powell, Anahid E. and Lenhard, Michael}, title = {Control of organ size in plants}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {898}, issn = {1866-8372}, doi = {10.25932/publishup-43802}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438029}, pages = {10}, year = {2012}, abstract = {The size of plant organs, such as leaves and flowers, is determined by an interaction of genotype and environmental influences. Organ growth occurs through the two successive processes of cell proliferation followed by cell expansion. A number of genes influencing either or both of these processes and thus contributing to the control of final organ size have been identified in the last decade. Although the overall picture of the genetic regulation of organ size remains fragmentary, two transcription factor/microRNA-based genetic pathways are emerging in the control of cell proliferation. However, despite this progress, fundamental questions remain unanswered, such as the problem of how the size of a growing organ could be monitored to determine the appropriate time for terminating growth. While genetic analysis will undoubtedly continue to advance our knowledge about size control in plants, a deeper understanding of this and other basic questions will require including advanced live-imaging and mathematical modeling, as impressively demonstrated by some recent examples. This should ultimately allow the comparison of the mechanisms underlying size control in plants and in animals to extract common principles and lineage-specific solutions.}, language = {en} }