@phdthesis{Heinz2024, author = {Heinz, Markus}, title = {Synthese von Monomeren auf der Basis nachwachsender Rohstoffe und ihre Polymerisation}, doi = {10.25932/publishup-63794}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-637943}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 267}, year = {2024}, abstract = {Die vorliegende Arbeit thematisiert die Synthese und die Polymerisation von Monomeren auf der Basis nachwachsender Rohstoffe wie zum Beispiel in Gew{\"u}rzen und ätherischen Ölen enthaltenen kommerziell verf{\"u}gbaren Phenylpropanoiden (Eugenol, Isoeugenol, Zimtalkohol, Anethol und Estragol) und des Terpenoids Myrtenol sowie ausgehend von der Rinde einer Birke (Betula pendula) und der Korkeiche (Quercus suber). Ausgew{\"a}hlte Phenylpropanoide (Eugenol, Isoeugenol und Zimtalkohol) und das Terpenoid Myrtenol wurden zun{\"a}chst in den jeweiligen Laurylester {\"u}berf{\"u}hrt und anschließend das olefinische Strukturelement epoxidiert, wobei 4 neue (2-Methoxy-4-(oxiran-2-ylmethyl)phenyldodecanoat, 2-Methoxy-4-(3-methyl-oxiran-2-yl)phenyldodecanoat, (3-Phenyloxiran-2-yl)methyldodecanoat, (7,7-Dimethyl-3-oxatricyclo[4.1.1.02,4]octan-2-yl)methyldodecanoat) und 2 bereits bekannte monofunktionelle Epoxide (2-(4-Methoxybenzyl)oxiran und 2-(4-Methoxyphenyl)-3-methyloxiran) erhalten wurden, die mittels 1H-NMR-, 13C-NMR- und FT-IR-Spektroskopie sowie mit DSC untersucht wurden. Die Photo-DSC Untersuchung der Epoxidmonomere in einer kationischen Photopolymerisation bei 40 °C ergab die maximale Polymerisationsgeschwindigkeit (Rpmax: 0,005 s-1 bis 0,038 s-1) sowie die Zeit (tmax: 13 s bis 26 s) bis zum Erreichen des Rpmax-Wertes und f{\"u}hrte zu fl{\"u}ssigen Oligomeren, deren zahlenmittlerer Polymerisationsgrad mit 3 bis 6 mittels GPC bestimmt wurde. Die Umsetzung von 2-Methoxy-4-(oxiran-2-ylmethyl)phenyldodecanoat mit Methacrylsäure ergab ein Isomerengemisch (2-Methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat und 2-Methoxy-4-(2-(methacryl-oyloxy)-3-hydroxypropyl)phenyldodecanoat), das mittels Photo-DSC in einer freien radikalischen Photopolymerisation untersucht wurde (Rpmax: 0,105 s-1 und tmax: 5 s), die zu festen in Chloroform unlöslichen Polymeren f{\"u}hrte. Aus Korkpulver und gemahlener Birkenrinde wurden selektiv 2 kristalline ω-Hydroxyfettsäuren (9,10-Epoxy-18-hydroxyoctadecansäure und 22-Hydroxydocosansäure) isoliert. Die kationische Photopolymerisation der 9,10-Epoxy-18-hydroxyoctadecansäure ergab einen nahezu farblosen transparenten und bei Raumtemperatur elastischen Film, welcher ein Anwendungspotential f{\"u}r Oberflächenbeschichtungen hat. Aus der Reaktion von 9,10-Epoxy-18-hydroxyoctadecansäure mit Methacrylsäure wurde ein bei Raumtemperatur fl{\"u}ssiges Gemisch aus zwei Konstitutionsisomeren (9,18-Dihydroxy-10-(methacryloyloxy)octadecansäure und 9-(Methacryloyloxy)-10,18-dihydroxyoctadecansäure) erhalten (Tg: -60 °C). Die radikalische Photopolymerisation dieser Konstitutionsisomere wurde ebenfalls mittels Photo-DSC untersucht (Rpmax: 0,098 s-1 und tmax: 3,8 s). Die Reaktion von 22-Hydroxydocosansäure mit Methacryloylchlorid ergab die kristalline 22-(Methacryloyloxy)docosansäure, welche ebenfalls in einer radikalischen Photopolymerisation mittels Photo-DSC untersucht wurde (Rpmax: 0,023 s-1 und tmax: 9,6 s). Die mittels AIBN in Dimethylsulfoxid initiierte Homopolymerisation der 22-(Methacryloyloxy)docosansäure und der Isomerengemische bestehend aus 2-Methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat und 2-Methoxy-4-(2-(methacryl-oyloxy)-3-hydroxypropyl)phenyldodecanoat sowie aus 9,18-Dihydroxy-10-(methacryloy-loxy)octadecansäure und 9-(Methacryloyloxy)-10,18-dihydroxyoctadecansäure ergab feste lösliche Polymere, die mittels 1H-NMR- und FT-IR-Spektroskopie, GPC (Poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyldodecanoat): Pn = 94) und DSC (Poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyldodecanoat): Tg: 52 °C; Poly(9,18-dihydroxy-10-(methacryloyloxy)-octadecansäure / 9-(methacryloyloxy)-10,18-dihydroxyoctadecansäure): Tg: 10 °C; Poly(22-(methacryloyloxy)docosansäure): Tm: 74,1 °C, wobei der Schmelzpunkt mit dem des Photopolymers (Tm = 76,8 °C) vergleichbar ist) charakterisiert wurden. Das bereits bekannte Monomer 4-(4-Methacryloyloxyphenyl)butan-2-on wurde ausgehend von 4-(4-Hydroxyphenyl)butan-2-on hergestellt, welches aus Birkenrinde gewonnen werden kann, und unter identischen Bedingungen f{\"u}r einen Vergleich mit den neuen Monomeren polymerisiert. Die freie radikalische Polymerisation f{\"u}hrte zu Poly(4-(4-methacryloyloxyphenyl)butan-2-on) (Pn: 214 und Tg: 83 °C). Neben der Homopolymerisation wurde eine statistische Copolymerisation des Isomerengemisches 2-Methoxy-4-(2-hydroxy-3-(methacryl-oyloxy)propyl)phenyldodecanoat / 2-Methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)-phenyldodecanoat mit 4-(4-Methacryloyloxyphenyl)butan-2-on untersucht, wobei ein äquimolarer Einsatz der Ausgangsmonomere zu einem Anstieg der Ausbeute, der Molmassenverteilung und der Dispersität des Copolymers (Tg: 44 °C) f{\"u}hrte. Die unter Verwendung von Diethylcarbonat als „gr{\"u}nes" Lösungsmittel mittels AIBN initiierten freien radikalischen Homopolymerisationen von 4-(4-Methacryloyloxyphenyl)butan-2-on und von Laurylmethacrylat ergaben vergleichbare Polymerisationsgrade der Homopolymere (Pn: 150), welche jedoch aufgrund ihrer Strukturunterschiede deutlich unterschiedliche Glas{\"u}bergangstemperaturen hatten (Poly(4-(4-methacryloyloxyphenyl)butan-2-on): Tg: 70 °C, Poly(laurylmethacrylat) Tg: -49 °C. Eine statistische Copolymerisation äquimolarer Stoffmengen der beiden Monomere in Diethylcarbonat f{\"u}hrte bei einer Polymerisationszeit von 60 Minuten zu einem leicht bevorzugten Einbau des 4-(4-Methacryloyloxyphenyl)butan-2-on in das Copolymer (Tg: 17 °C). Copolymerisationsdiagramme f{\"u}r die freien radikalischen Copolymerisationen von 4-(4-Methacryloyloxyphenyl)butan-2-on mit n-Butylmethacrylat beziehungsweise 2-(Dimethylamino)ethylmethacrylat (t: 20 min bis 60 min; Molenbr{\"u}che (X) f{\"u}r 4-(4-Methacryloyloxyphenyl)butan-2-on: 0,2; 0,4; 0,6 und 0,8) zeigten ein nahezu ideales azeotropes Copolymerisationsverhalten, obwohl ein leicht bevorzugter Einbau von 4-(4-Methacryloyloxyphenyl)butan-2-on in das jeweilige Copolymer beobachtet wurde. Dabei korreliert ein Anstieg der Ausbeute und der Glas{\"u}bergangstemperatur der erhaltenen Copolymere mit einem zunehmenden Gehalt an 4-(4-Methacryloyloxyphenyl)butan-2-on im Reaktionsgemisch. Die unter Einsatz der modifizierten Gibbs-DiMarzio-Gleichung berechneten Glas{\"u}bergangstemperaturen der Copolymere stimmten mit den gemessenen Werten gut {\"u}berein. Das ist eine gute Ausgangsbasis f{\"u}r die Bestimmung der Glas{\"u}bergangstemperatur eines Copolymers mit einer beliebigen Zusammensetzung.}, language = {de} } @phdthesis{Strunk2018, author = {Strunk, David}, title = {Gewinnung phenolischer Komponenten aus dem Birkenstamm als Rohstoffquelle f{\"u}r die Synthese eines neuen substituierten Phenylmethacrylats und dessen Polymerisation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409228}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 157}, year = {2018}, abstract = {In der vorliegenden Arbeit werden Wege zur Gewinnung verschiedener phenolischer Substanzen wie Lignin, Diarylheptanoide und 4-(3-Oxobutyl)phenol (Himbeerketon) aus dem Stamm der H{\"a}ngebirke (Betula pendula) aufgezeigt. Durch Methacrylierung des 4-(3-Oxobutyl)phenols wurde ein Monomer erzeugt, welches mittels freier radikalischer Masse- und L{\"o}sungspolymerisation, sowie enzymatischer Polymerisation polymerisiert werden kann. Eine erste Isolierung von Bestandteilen wurde durch Extraktion von Innenholz bzw. Rinde mit Methanol erzielt. Die in Methanol unl{\"o}slichen Bestandteile des Innenholzes und der Rinde wurden anschließend mit ausgew{\"a}hlten ionischen Fl{\"u}ssigkeiten extrahiert. Es wurde ein Verfahren zum selektiven Trennen der mit diesen ionischen Fl{\"u}ssigkeiten extrahierten Bestandteile in Cellulose, Hemicellulose, Lignin und mit Ethylacetat extrahierbare Bestandteile entwickelt. Hierdurch war es m{\"o}glich, sowohl die verwendeten ionischen Fl{\"u}ssigkeiten als auch das Innenholz und die Rinde hinsichtlich ihres Extraktionsverhaltens miteinander zu vergleichen. Ferner wurden verschiedene Strategien aufgezeigt, um insgesamt drei Spezies an Diarylheptanoiden aus dem methanolischen Extrakt der Rinde zu isolieren. Eines der gefundenen Diarylheptanoide (5 Hydroxy-1,7-bis(4-hydroxyphenyl)-3-heptanon) wurde via Retroaldolreaktion in 4 (3 Oxobutyl)phenol (Himbeerketon) und 3 (4 Hydroxyphenyl)propanal gespalten. Es wurde die Verwendung des 4-(3-Oxobutyl)phenol als Monomerbestandteil untersucht. Hierf{\"u}r wurde 4-(3-Oxobutyl)phenylmethacrylat synthetisiert und Wege zur Reinigung mittels S{\"a}ulenchromatographie und Umkristallisation aufgezeigt. Anschließend wurde Poly(4-(3-oxobutyl)phenylmethacrylat) (PObMA) und Polybenzylmethacrylats (PBzMA) aus Massen- und L{\"o}sungspolymerisation hergestellt. Die Ausbeuten an PObpMA im Vergleich zum PBzMA liegen bei gleichen Reaktionsbedingungen auf gleichem Niveau. Im Kontrast hierzu ist der Polymerisationsgrad aus freier radikalischer Polymerisation in Masse des PObpMA im Vergleich zum PBzMA um den Faktor 3,7 gr{\"o}ßer. Die Glas{\"u}bergangstemperaturen des PObpMA liegen bei gleichen Reaktionsbedingungen sowohl bei freier radikalischer Polymerisation in Masse, als auch bei L{\"o}sungspolymerisation {\"u}ber denen des PBzMA. Dar{\"u}ber hinaus wurde die Polymerisation von 4-(3-Oxobutyl)phenylmethacrylat und Benzylmethacrylat mit einem Initiatorsystem bestehend aus Meerrettichperoxidase, Acetylaceton und Wasserstoffperoxid bei Raumtemperatur beschrieben. Die mit enzymatischem Initiatorsystem erzeugten Produkte zeigten starke {\"U}bereinstimmung mit Produkten aus L{\"o}sungspolymerisationen, welche mit Azobis(isobutyronitril) initiiert wurden.}, language = {de} }