@phdthesis{Memola2002, author = {Memola, Elisabetta}, title = {Magnetic jets from accretion disks : field structure and X-ray emission}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000458}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Astrophysikalische Jets sind stark kollimierte Materiestr{\"o}mungen hoher Geschwindigkeit. Sie stehen im Zusammenhang mit einer F{\"u}lle verschiedener astrophysikalischer Objekte wie jungen Sternen, stellaren schwarzen L{\"o}chern ('Mikro-Quasare'), Galaxien mit aktivem Kern (AGN) und wahrscheinlich auch mit dem beobachteten intensiven Aufblitzen von Gamma-Strahlung (Gamma Ray Bursts). Insbesondere hat sich gezeigt, dass die Jets der Mikro-Quasare wahrscheinlich als kleinskalige Version der Jets der AGN anzusehen sind. Neben den Beobachtungen haben vor allem auch theoretische {\"U}berlegungen gezeigt, dass Magnetfelder bei der Jetentstehung, -beschleunigung und -kollimation eine wichtige Rolle spielen. Weiterhin scheinen Jets systematisch verkn{\"u}pft zu sein mit dem Vorhandensein einer Akkretionsscheibe um das zentrale Objekt. Insbesondere wenn ein schwarzes Loch den Zentralk{\"o}rper darstellt, ist die umgebende Akkretionsscheibe der einzig m{\"o}gliche Ort um Magnetfeld erzeugen zu k{\"o}nnen. Wir sind speziell interessiert am Entstehungsprozess hoch relativistischer Jets wie sie bei Mikro-Quasaren und AGN beobachtet werden. Insbesondere untersuchen wir die Region, in der der Jet kollimiert, eine Region, deren r{\"a}umliche Ausdehnung extrem klein ist selbst im Vergleich zur Aufl{\"o}sung der Radioteleskope. Dies ist ein Grund, wieso zum heutigen Zeitpunkt f{\"u}r die meisten Quellen die theoretische Modellierung die einzige M{\"o}glichkeit darstellt, um Information {\"u}ber die physikalischen Prozesse in der innersten Region der Jetentstehung zu erhalten. Uns ist es zum ersten Mal gelungen, die globale zwei-dimensionale Magnetfeldstruktur station{\"a}rer, axialsymmetrischer, relativistischer und stark magnetisierter (kr{\"a}fte-freier) Jets zu berechnen, die zum einen asymptotisch in einen zylindrischen Jet kollimieren, zum anderen aber in einer differential rotierenden Akkretionsscheibe verankert sind. Damit erlaubt dieser Ansatz eine physikalische Verkn\&\#168;upfung zwischen Akkretionsscheibe und dem asymptotischen Jet. Nimmt man also an, dass die Fußpunkte der Magnetfeldlinien mit Keplergeschwindigkeit rotieren, so kann man eine direkte Skalierung der Jetmagnetosphere mit der Gr{\"o}ße des Zentralobjektes erhalten. Unsere Resultate zeigen eine gute {\"U}bereinstimmung zwischen unserem Modell und Beobachtungen des Jets von M87. F{\"u}r das Beispiel eines relativistischen Mikroquasarjets haben wir die R{\"o}ntgenemission im Bereich von 0.2-10.1 keV berechnet. Daf{\"u}r haben wir in der Literatur aus den relativistischen magnetohydrodynamischen Gleichungen berechnete Jetgr{\"o}ßen (Dichte-, Geschwindigkeits-, und Temperaturprofil) verwendet und das Spektrum f{\"u}r jeden Punkt entlang der Jetstr{\"o}mung abgeleitet. Das theoretische thermische R{\"o}ntgenspektrum des innersten, heißen Teils des Jets erhalten wir zusammengesetzt aus den spektralen Anteilen der einzelnen Volumenelemente entlang des Jets. Um relativistische Effekte wie Dopplerverschiebung und -verst{\"a}rkung (boosting) aufgrund der Jetbewegung zu untersuchen, haben wir f{\"u}r verschiedene Inklinationswinkel des Jets zur Sichtlinie berechnet, wie die erhaltenen Spektren davon beeinflusst werden. Unsere Spektren zeigen deutlich die hochionisierten Eisen-Emissionslinien, die in den galaktischen Mikroquasaren GRS 1915+105 und XTE J1748-288 andeutungsweise beobachtet wurden. Eine Dopplerverschiebung dieser Linien ist in unseren Spektren deutlichzu sehen. Da die innerste, R{\"o}ntgenstrahlung emittierende Region des magnetohydrodynamischen Jets allerdings noch unkollimiert ist, spielt Dopplerboosting in unseren Spektren, abh{\"a}ngig vom Sichtwinkel, keine große Rolle. Mit unseren Resultaten konnte zum ersten Mal ein R{\"o}ntgenspektrum gewonnen werden, das auf der numerischen L{\"o}sung eines magnetohydrodynamischen Jets beruht.}, language = {en} }