@phdthesis{Kettner2018, author = {Kettner, Marie Therese}, title = {Microbial colonization of microplastic particles in aquatic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418854}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2018}, abstract = {The continuously increasing pollution of aquatic environments with microplastics (plastic particles < 5 mm) is a global problem with potential implications for organisms of all trophic levels. For microorganisms, trillions of these floating microplastics particles represent a huge surface area for colonization. Due to the very low biodegradability, microplastics remain years to centuries in the environment and can be transported over thousands of kilometers together with the attached organisms. Since also pathogenic, invasive, or otherwise harmful species could be spread this way, it is essential to study microplastics-associated communities. For this doctoral thesis, eukaryotic communities were analyzed for the first time on microplastics in brackish environments and compared to communities in the surrounding water and on the natural substrate wood. With Illumina MiSeq high-throughput sequencing, more than 500 different eukaryotic taxa were detected on the microplastics samples. Among them were various green algae, dinoflagellates, ciliates, fungi, fungal-like protists and small metazoans such as nematodes and rotifers. The most abundant organisms was a dinoflagellate of the genus Pfiesteria, which could include fish pathogenic and bloom forming toxigenic species. Network analyses revealed that there were numerous interaction possibilities among prokaryotes and eukaryotes in microplastics biofilms. Eukaryotic community compositions on microplastics differed significantly from those on wood and in water, and compositions were additionally distinct among the sampling locations. Furthermore, the biodiversity was clearly lower on microplastics in comparison to the diversity on wood or in the surrounding water. In another experiment, a situation was simulated in which treated wastewater containing microplastics was introduced into a freshwater lake. With increasing microplastics concentrations, the resulting bacterial communities became more similar to those from the treated wastewater. Moreover, the abundance of integrase I increased together with rising concentrations of microplastics. Integrase I is often used as a marker for anthropogenic environmental pollution and is further linked to genes conferring, e.g., antibiotic resistance. This dissertation gives detailed insights into the complexity of prokaryotic and eukaryotic communities on microplastics in brackish and freshwater systems. Even though microplastics provide novel microhabitats for various microbes, they might also transport toxigenic, pathogenic, antibiotic-resistant or parasitic organisms; meaning their colonization can pose potential threats to humans and the environment. Finally, this thesis explains the urgent need for more research as well as for strategies to minimize the global microplastic pollution.}, language = {en} }