@phdthesis{Nagel2019, author = {Nagel, Oliver}, title = {Amoeboid cells as a transport system for micro-objects}, doi = {10.25932/publishup-44219}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442192}, school = {Universit{\"a}t Potsdam}, pages = {x, 84}, year = {2019}, abstract = {Due to advances in science and technology towards smaller and more powerful processing units, the fabrication of micrometer sized machines for different tasks becomes more and more possible. Such micro-robots could revolutionize medical treatment of diseases and shall support to work on other small machines. Nevertheless, scaling down robots and other devices is a challenging task and will probably remain limited in near future. Over the past decade the concept of bio-hybrid systems has proved to be a promising approach in order to advance the further development of micro-robots. Bio-hybrid systems combine biological cells with artificial components, thereby benefiting from the functionality of living biological cells. Cell-driven micro-transport is one of the most prominent applications in the emerging field of these systems. So far, micrometer sized cargo has been successfully transported by means of swimming bacterial cells. The potential of motile adherent cells as transport systems has largely remained unexplored. This thesis concentrates on the social amoeba Dictyostelium discoideum as a potential candidate for an amoeboid bio-hybrid transport system. The use of this model organism comes with several advantages. Due to the unspecific properties of Dictyostelium adhesion, a wide range of different cargo materials can be used for transport. As amoeboid cells exceed bacterial cells in size by one order of magnitude, also the size of an object carried by a single cell can also be much larger for an amoeba. Finally it is possible to guide the cell-driven transport based on the chemotactic behavior of the amoeba. Since cells undergo a developmentally induced chemotactic aggregation, cargo could be assembled in a self-organized manner into a cluster. It is also possible to impose an external chemical gradient to guide the amoeboid transport system to a desired location. To establish Dictyostelium discoideum as a possible candidate for bio-hybrid transport systems, this thesis will first investigate the movement of single cells. Secondly, the interaction of cargo and cells will be studied. Eventually, a conceptional proof will be conducted, that the cheomtactic behavior can be exploited either to transport a cargo self-organized or through an external chemical source.}, language = {en} }