@article{RoesslerKruegerRuempkeretal.2006, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and R{\"u}mpker, Georg and Psencik, Ivan}, title = {Tensile source components of swarm events in West Bohemia in 2000 by considering seismic anisotropy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12975}, year = {2006}, abstract = {Earthquake swarms occur frequently in West Bohemia, Central Europe. Their occurrence is correlated with and propably triggered by fluids that escape on the earth's surface near the epicentres. These fluids raise up periodically from a seemingbly deep-seated source in the upper mantle. Moment tensors for swarm events in 1997 indicate tensile faulting. However, they were determined under assumption of seismic isotropy although anisotropy can be observed. Anisotropy may obscure moment tensors and their interpretation. In 2000, more than 10,000 swarm earthquakes occurred near Novy Kostel, West Bohemia. Event triggering by fluid injection is likely. Activity lasted from 28/08 until 31/12/00 (9 phases) with maximum ML=3.2. High quality P-wave seismograms were used to retrieve the source mechanisms for 112 events between 28/08/00 and 30/10/00 using > 20 stations. We determine the source geometry using a new algorithm and different velocity models including anisotropy. From inversions of P waves we observe ML<3.2, strike-slip events on steep N-S oriented faults with additional normal or reverse components. Tensile components seem to be evident for more than 60\% of the processed swarm events in West Bohemia during the phases 1-7. Being most significant at great depths and at phases 1-4 during the swarm they are time and location dependent. Although tensile components are reduced when anisotropy is assumed they persist and seem to be important. They can be explained by pore-pressure changes due to the injection of fluids that raise up. Our findings agree with other observations e.g. correlation of fluid transport and seismicity, variations in b-value, forcing rate, and in pore pressure diffusion. Tests of our results show their significance.}, language = {en} } @misc{LipkeKruegerRoessler2008, author = {Lipke, Katrin and Kr{\"u}ger, Frank and R{\"o}ßler, Dirk}, title = {Subduction zone structure along Sumatra from receiver functions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18260}, year = {2008}, abstract = {Receiver functions are a good tool to investigate the seismotectonic structure beneath the a seismic station. In this study we apply the method to stations situated on or near Sumatra to find constraints on a more detailed velocity model which should improve earthquake localisation. We estimate shallow Moho-depths (~ 21 km) close to the trench and depths of ~30 km at greater distances. First evidences for the dip direction of the slab of ~60° are provided. Receiver functions were calculated for 20 stations for altogether 110 earthquakes in the distance range between 30° and 95° from the receiver. However the number of receiver functions per station is strongly variable as it depends on the installation date, the signal-to-noise-ratio of the station and the reliability of the acquisition.}, language = {en} } @phdthesis{Kulikova2015, author = {Kulikova, Galina}, title = {Source parameters of the major historical earthquakes in the Tien-Shan region from the late 19th to the early 20th century}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88370}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 164}, year = {2015}, abstract = {The Tien-Shan and the neighboring Pamir region are two of the largest mountain belts in the world. Their deformation is dominated by intermontane basins bounded by active thrust and reverse faulting. The Tien-Shan mountain belt is characterized by a very high rate of seismicity along its margins as well as within the Tien-Shan interior. The study area of the here presented thesis, the western part of the Tien-Shan region, is currently seismically active with small and moderate sized earthquakes. However, at the end of the 19th beginning of the 20th century, this region was struck by a remarkable series of large magnitude (M>7) earthquakes, two of them reached magnitude 8. Those large earthquakes occurred prior to the installation of the global digital seismic network and therefore were recorded only by analog seismic instruments. The processing of the analog data brings several difficulties, for example, not always the true parameters of the recording system are known. Another complicated task is the digitization of those records - a very time-consuming and delicate part. Therefore a special set of techniques is developed and modern methods are adapted for the digitized instrumental data analysis. The main goal of the presented thesis is to evaluate the impact of large magnitude M≥7.0 earthquakes, which occurred at the turn of 19th to 20th century in the Tien-Shan region, on the overall regional tectonics. A further objective is to investigate the accuracy of previously estimated source parameters for those earthquakes, which were mainly based on macroseismic observations, and re-estimate them based on the instrumental data. An additional aim of this study is to develop the tools and methods for faster and more productive usage of analog seismic data in modern seismology. In this thesis, the ten strongest and most interesting historical earthquakes in Tien-Shan region are analyzed. The methods and tool for digitizing and processing the analog seismic data are presented. The source parameters of the two major M≥8.0 earthquakes in the Northern Tien-Shan are re-estimated in individual case studies. Those studies are published as peer-reviewed scientific articles in reputed journals. Additionally, the Sarez-Pamir earthquake and its connection with one of the largest landslides in the world, Usoy landslide, is investigated by seismic modeling. These results are also published as a research paper. With the developed techniques, the source parameters of seven more major earthquakes in the region are determined and their impact on the regional tectonics was investigated. The large magnitudes of those earthquakes are confirmed by instrumental data. The focal mechanism of these earthquakes were determined providing evidence for responsible faults or fault systems.}, language = {en} } @phdthesis{Zeckra2020, author = {Zeckra, Martin}, title = {Seismological and seismotectonic analysis of the northwestern Argentine Central Andean foreland}, doi = {10.25932/publishup-47324}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473240}, school = {Universit{\"a}t Potsdam}, pages = {vii, 120}, year = {2020}, abstract = {After a severe M W 5.7 earthquake on October 17, 2015 in El Galp{\´o}n in the province of Salta NW Argentina, I installed a local seismological network around the estimated epicenter. The network covered an area characterized by inherited Cretaceous normal faults and neotectonic faults with unknown recurrence intervals, some of which may have been reactivated normal faults. The 13 three-component seismic stations recorded data continuously for 15 months. The 2015 earthquake took place in the Santa B{\´a}rbara System of the Andean foreland, at about 17km depth. This region is the easternmost morphostructural region of the central Andes. As a part of the broken foreland, it is bounded to the north by the Subandes fold-and-thrust belt and the Sierras Pampeanas to the south; to the east lies the Chaco-Paran{\´a} basin. A multi-stage morphotectonic evolution with thick-skinned basement uplift and coeval thin-skinned deformation in the intermontane basins is suggested for the study area. The release of stresses associated with the foreland deformation can result in strong earthquakes, as the study area is known for recurrent and historical, destructive earthquakes. The available continuous record reaches back in time, when the strongest event in 1692 (magnitude 7 or intensity IX) destroyed the city of Esteco. Destructive earthquakes and surface deformation are thus a hallmark of this part of the Andean foreland. With state-of-the-art Python packages (e.g. pyrocko, ObsPy), a semi-automatic approach is followed to analyze the collected continuous data of the seismological network. The resulting 1435 hypocenter locations consist of three different groups: 1.) local crustal earthquakes (nearly half of the events belong to this group), 2.) interplate activity, of regional distance in the slab of the Nazca-plate, and 3.) very deep earthquakes at about 600km depth. My major interest focused on the first event class. Those crustal events are partly aftershock events of the El Galp{\´o}n earthquake and a second earthquake, in the south of the same fault. Further events can be considered as background seismicity of other faults within the study area. Strikingly, the seismogenic zone encompass the whole crust and propagates brittle deformation down, close to the Moho. From the collected seismological data, a local seismic velocity model is estimated, using VELEST. After the execution of various stability tests, the robust minimum 1D-velocity model implies guiding values for the composition of the local, subsurface structure of the crust. Afterwards, performing a hypocenter relocation enables the assignment of individual earthquakes to aftershock clusters or extended seismotectonic structures. This allows the mapping of previously unknown seismogenic faults. Finally, focal mechanisms are modeled for events with acurately located hypocenters, using the newly derived local velocity model. A compressive regime is attested by the majority of focal mechanisms, while the strike direction of the individual seismogenic structures is in agreement with the overall north - south orientation of the Central Andes, its mountain front, and individual mountain ranges in the southern Santa-B{\´a}rbara-System.}, language = {en} } @misc{RoesslerKruegerOhrnberger2007, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ohrnberger, Matthias}, title = {Rupture propagation of recent large TsE off-coast Sumatra and Java}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13039}, year = {2007}, abstract = {The spatio-temporal evolution of the three recent tsunamogenic earthquakes (TsE) off-coast N-Sumatra (Mw9.3), 28/03/2005 (Mw8.5) off-coast Nias, on 17/07/2006 (Mw7.7) off-coast Java. Start time, duration, and propagation of the rupture are retrieved. All parameters can be obtained rapidly after recording of the first-arrival phases in near-real time processing. We exploit semblance analysis, backpropagation and broad-band seismograms within 30°-95° distance. Image enhancement is reached by stacking the semblance of arrays within different directions. For the three events, the rupture extends over about 1150, 150, and 200km, respectively. The events in 2004, 2005, and 2006 had source durations of at least 480s, 120s, and 180s, respectively. We observe unilateral rupture propagation for all events except for the rupture onset and the Nias event, where there is evidence for a bilateral start of the rupture. Whereas average rupture speed of the events in 2004 and 2005 is in the order of the S-wave speed (≈2.5-3km/s), unusually slow rupturing (≈1.5 km/s) is indicated for the July 2006 event. For the July 2006 event we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Fault area and aftershock distribution coincide. Spatial and temporal resolution are frequency dependent. Studies of a Mw6.0 earthquake on 2006/09/21 and one synthetic source show a ≈1° limit in resolution. Retrieved source area, source duration as well as peak values for semblance and beam power generally increase with the size of the earthquake making possible an automatic detection and classification of large and small earthquakes.}, language = {en} } @misc{KruegerOhrnbergerRoessler2008, author = {Kr{\"u}ger, Frank and Ohrnberger, Matthias and R{\"o}ßler, Dirk}, title = {Rupture imaging of large earthquakes with a poststack isochrone migration method}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18395}, year = {2008}, abstract = {Rapid and robust characterization of large earthquakes in terms of their spatial extent and temporal duration is of high importance for disaster mitigation and early warning applications. Backtracking of seismic P-waves was successfully used by several authors to image the rupture process of the great Sumatra earthquake (26.12.2004) using short period and broadband arrays. We follow here an approach of Walker et al. to backtrack and stack broadband waveforms from global network stations using traveltimes for a global Earth model to obtain the overall spatio-temporal development of the energy radiation of large earthquakes in a quick and robust way. We present results for selected events with well studied source processes (Kokoxili 14.11.2001, Tokachi-Oki 25.09.2003, Nias 28.03.2005). Further, we apply the technique in a semi-real time fashion to broadband data of earthquakes with a broadband magnitude >= 7 (roughly corresponding to Mw 6.5). Processing is based on first automatic detection messages from the GEOFON extended virtual network (GEVN).}, language = {en} } @phdthesis{Koehler2009, author = {K{\"o}hler, Andreas}, title = {Recognition and investigation of temporal patterns in seismic wavefields using unsupervised learning techniques}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29702}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Modern acquisition of seismic data on receiver networks worldwide produces an increasing amount of continuous wavefield recordings. Hence, in addition to manual data inspection, seismogram interpretation requires new processing utilities for event detection, signal classification and data visualization. Various machine learning algorithms, which can be adapted to seismological problems, have been suggested in the field of pattern recognition. This can be done either by means of supervised learning using manually defined training data or by unsupervised clustering and visualization. The latter allows the recognition of wavefield patterns, such as short-term transients and long-term variations, with a minimum of domain knowledge. Besides classical earthquake seismology, investigations of temporal patterns in seismic data also concern novel approaches such as noise cross-correlation or ambient seismic vibration analysis in general, which have moved into focus within the last decade. In order to find records suitable for the respective approach or simply for quality control, unsupervised preprocessing becomes important and valuable for large data sets. Machine learning techniques require the parametrization of the data using feature vectors. Applied to seismic recordings, wavefield properties have to be computed from the raw seismograms. For an unsupervised approach, all potential wavefield features have to be considered to reduce subjectivity to a minimum. Furthermore, automatic dimensionality reduction, i.e. feature selection, is required in order to decrease computational cost, enhance interpretability and improve discriminative power. This study presents an unsupervised feature selection and learning approach for the discovery, imaging and interpretation of significant temporal patterns in seismic single-station or network recordings. In particular, techniques permitting an intuitive, quickly interpretable and concise overview of available records are suggested. For this purpose, the data is parametrized by real-valued feature vectors for short time windows using standard seismic analysis tools as feature generation methods, such as frequency-wavenumber, polarization, and spectral analysis. The choice of the time window length is dependent on the expected durations of patterns to be recognized or discriminated. We use Self-Organizing Maps (SOMs) for a data-driven feature selection, visualization and clustering procedure, which is particularly suitable for high-dimensional data sets. Using synthetics composed of Rayleigh and Love waves and three different types of real-world data sets, we show the robustness and reliability of our unsupervised learning approach with respect to the effect of algorithm parameters and data set properties. Furthermore, we approve the capability of the clustering and imaging techniques. For all data, we find improved discriminative power of our feature selection procedure compared to feature subsets manually selected from individual wavefield parametrization methods. In particular, enhanced performance is observed compared to the most favorable individual feature generation method, which is found to be the frequency spectrum. The method is applied to regional earthquake records at the European Broadband Network with the aim to define suitable features for earthquake detection and seismic phase classification. For the latter, we find that a combination of spectral and polarization features favor S wave detection at a single receiver. However, SOM-based visualization of phase discrimination shows that clustering applied to the records of two stations only allows onset or P wave detection, respectively. In order to improve the discrimination of S waves on receiver networks, we recommend to consider additionally the temporal context of feature vectors. The application to continuous recordings of seismicity close to an active volcano (Mount Merapi, Java, Indonesia) shows that two typical volcano-seismic events (VTB and Guguran) can be detected and distinguished by clustering. In contrast, so-called MP events cannot be discriminated. Comparable results are obtained for selected features and recognition rates regarding a previously implemented supervised classification system. Finally, we test the reliability of wavefield clustering to improve common ambient vibration analysis methods such as estimation of dispersion curves and horizontal to vertical spectral ratios. It is found, that in general, the identified short- and long-term patterns have no significant impact on those estimates. However, for individual sites, effects of local sources can be identified. Leaving out the corresponding clusters, yields reduced uncertainties or allows for improving estimation of dispersion curves.}, language = {en} } @phdthesis{Budweg2002, author = {Budweg, Martin}, title = {Der obere Mantel in der Eifel-Region untersucht mit der Receiver Function Methode}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000704}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Die Eifel ist eines der j{\"u}ngsten vulkanischen Gebiete Mitteleuropas. Die letzte Eruption ereignete sich vor ungef{\"a}hr 11000 Jahren. Bisher ist relativ wenig bekannt {\"u}ber die tieferen Mechanismen, die f{\"u}r den Vulkanismus in der Eifel verantwortlich sind. Erdbebenaktivit{\"a}t deutet ebenso darauf hin, dass die Eifel eines der geodynamisch aktivsten Gebiete Mitteleuropas ist. In dieser Arbeit wird die Receiver Function Methode verwendet, um die Strukturen des oberen Mantels zu untersuchen. 96 teleseismische Beben (mb > 5.2) wurden ausgewertet, welche von permanenten und mobilen breitbandigen und kurzperiodischen Stationen aufgezeichnet wurden. Das tempor{\"a}re Netzwerk registrierte von November 1997 bis Juni 1998 und {\"u}berdeckte eine Fl{\"a}che von ungef{\"a}hr 400x250 km². Das Zentrum des Netzwerkes befand sich in der Vulkaneifel. Die Auswertung der Receiver Function Analyse ergab klare Konversionen von der Moho und den beiden Manteldiskontinuit{\"a}ten in 410 km und 660 km Tiefe, sowie Hinweise auf einen Mantel-Plume in der Region der Eifel. Die Moho wurde bei ungef{\"a}hr 30 km Tiefe beobachtet und zeigt nur geringe Variationen im Bereich des Netzwerkes. Die beobachteten Variationen der konvertierten Phasen der Moho k{\"o}nnen mit lateralen Schwankungen in der Kruste zu tun haben, die mit den Receiver Functions nicht aufgel{\"o}st werden k{\"o}nnen. Die Ergebnisse der Receiver Function Methode deuten auf eine Niedriggeschwindigkeitszone zwischen 60 km bis 90 km in der westlichen Eifel hin. In etwa 200 km Tiefe werden im Bereich der Eifel amplitudenstarke positive Phasen von Konversionen beobachtet. Als Ursache hierf{\"u}r wird eine Hochgeschwindigkeitszone vorgeschlagen, welche durch m{\"o}gliches aufsteigendes, dehydrierendes Mantel-Material verursacht wird. Die P zu S Konversionen an der 410 km Diskontinuit{\"a}t zeigen einen sp{\"a}teren Einsatz als nach dem IASP91-Modell erwartet wird. Die migrierten Daten weisen eine Absenkung der 410 km Diskontinuit{\"a}t um bis zu 20 km Tiefe auf, was einer Erh{\"o}hung der Temperatur von bis zu etwa 140° Celsius entspricht. Die 660 km Diskontinuit{\"a}t weist keine Aufw{\"o}lbung auf. Dies deutet darauf hin, dass kein Mantelmaterial direkt von unterhalb der 660 km Diskontinuit{\"a}t in der Eifel-Region aufsteigt oder, dass der Ursprung des Eifel-Plumes innerhalb der {\"U}bergangszone liegt.}, language = {de} } @misc{RoesslerKruegerOhrnberger2008, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ohrnberger, Matthias}, title = {Automatic near real-time characterisation of large earthquakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18382}, year = {2008}, abstract = {We use seismic array methods (semblance analysis) to image areas of seismic energy release in the Sunda Arc region and world-wide. Broadband seismograms at teleseismic distances (30° ≤ Δ ≤ 100°) are compared at several subarrays. Semblance maps of different subarrays are multiplied. High semblance tracked over long time (10s of second to minutes) and long distances indicate locations of earthquakes. The method allows resolution of rupture characteristics important for tsunami early warning: start and duration, velocity and direction, length and area. The method has been successfully applied to recent and historic events (M>6.5) and is now operational in real time. Results are obtained shortly after source time, see http://www.geo.uni-potsdam.de/Forschung/Geophysik/GITEWS/tsunami.htm). Comparison of manual and automatic processing are in good agreement. Computational effort is small. Automatic results may be obtained within 15 - 20 minutes after event occurrence.}, language = {en} }