@phdthesis{Munz2017, author = {Munz, Matthias}, title = {Water flow and heat transport modelling at the interface between river and aquifer}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404319}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 123}, year = {2017}, abstract = {The functioning of the surface water-groundwater interface as buffer, filter and reactive zone is important for water quality, ecological health and resilience of streams and riparian ecosystems. Solute and heat exchange across this interface is driven by the advection of water. Characterizing the flow conditions in the streambed is challenging as flow patterns are often complex and multidimensional, driven by surface hydraulic gradients and groundwater discharge. This thesis presents the results of an integrated approach of studies, ranging from the acquisition of field data, the development of analytical and numerical approaches to analyse vertical temperature profiles to the detailed, fully-integrated 3D numerical modelling of water and heat flux at the reach scale. All techniques were applied in order to characterize exchange flux between stream and groundwater, hyporheic flow paths and temperature patterns. The study was conducted at a reach-scale section of the lowland Selke River, characterized by distinctive pool riffle sequences and fluvial islands and gravel bars. Continuous time series of hydraulic heads and temperatures were measured at different depths in the river bank, the hyporheic zone and within the river. The analyses of the measured diurnal temperature variation in riverbed sediments provided detailed information about the exchange flux between river and groundwater. Beyond the one-dimensional vertical water flow in the riverbed sediment, hyporheic and parafluvial flow patterns were identified. Subsurface flow direction and magnitude around fluvial islands and gravel bars at the study site strongly depended on the position around the geomorphological structures and on the river stage. Horizontal water flux in the streambed substantially impacted temperature patterns in the streambed. At locations with substantial horizontal fluxes the penetration depths of daily temperature fluctuations was reduced in comparison to purely vertical exchange conditions. The calibrated and validated 3D fully-integrated model of reach-scale water and heat fluxes across the river-groundwater interface was able to accurately represent the real system. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. The simulation results showed that the water and heat exchange at the surface water-groundwater interface is highly variable in space and time with zones of daily temperature oscillations penetrating deep into the sediment and spots of daily constant temperature following the average groundwater temperature. The average hyporheic flow path temperature was found to strongly correlate with the flow path residence time (flow path length) and the temperature gradient between river and groundwater. Despite the complexity of these processes, the simulation results allowed the derivation of a general empirical relationship between the hyporheic residence times and temperature patterns. The presented results improve our understanding of the complex spatial and temporal dynamics of water flux and thermal processes within the shallow streambed. Understanding these links provides a general basis from which to assess hyporheic temperature conditions in river reaches.}, language = {en} } @phdthesis{Mulyukova2015, author = {Mulyukova, Elvira}, title = {Stability of the large low shear velocity provinces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82228}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2015}, abstract = {We study segregation of the subducted oceanic crust (OC) at the core mantle boundary and its ability to accumulate and form large thermochemical piles (such as the seismically observed Large Low Shear Velocity Provinces - LLSVPs). Our high-resolution numerical simulations suggest that the longevity of LLSVPs for up to three billion years, and possibly longer, can be ensured by a balance in the rate of segregation of high-density OC-material to the CMB, and the rate of its entrainment away from the CMB by mantle upwellings. For a range of parameters tested in this study, a large-scale compositional anomaly forms at the CMB, similar in shape and size to the LLSVPs. Neutrally buoyant thermochemical piles formed by mechanical stirring - where thermally induced negative density anomaly is balanced by the presence of a fraction of dense anomalous material - best resemble the geometry of LLSVPs. Such neutrally buoyant piles tend to emerge and survive for at least 3Gyr in simulations with quite different parameters. We conclude that for a plausible range of values of density anomaly of OC material in the lower mantle - it is likely that it segregates to the CMB, gets mechanically mixed with the ambient material, and forms neutrally buoyant large scale compositional anomalies similar in shape to the LLSVPs. We have developed an efficient FEM code with dynamically adaptive time and space resolution, and marker-in-cell methodology. This enabled us to model thermochemical mantle convection at realistically high convective vigor, strong thermally induced viscosity variations, and long term evolution of compositional fields.}, language = {en} } @phdthesis{Schroeder2015, author = {Schr{\"o}der, Sarah}, title = {Modelling surface evolution coupled with tectonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90385}, school = {Universit{\"a}t Potsdam}, pages = {viii, 129}, year = {2015}, abstract = {This study presents the development of 1D and 2D Surface Evolution Codes (SECs) and their coupling to any lithospheric-scale (thermo-)mechanical code with a quadrilateral structured surface mesh. Both SECs involve diffusion as approach for hillslope processes and the stream power law to reflect riverbed incision. The 1D SEC settles sediment that was produced by fluvial incision in the appropriate minimum, while the supply-limited 2D SEC DANSER uses a fast filling algorithm to model sedimantation. It is based on a cellular automaton. A slope-dependent factor in the sediment flux extends the diffusion equation to nonlinear diffusion. The discharge accumulation is achieved with the D8-algorithm and an improved drainage accumulation routine. Lateral incision enhances the incision's modelling. Following empirical laws, it incises channels of several cells width. The coupling method enables different temporal and spatial resolutions of the SEC and the thermo-mechanical code. It transfers vertical as well as horizontal displacements to the surface model. A weighted smoothing of the 3D surface displacements is implemented. The smoothed displacement vectors transmit the deformation by bilinear interpolation to the surface model. These interpolation methods ensure mass conservation in both directions and prevent the two surfaces from drifting apart. The presented applications refer to the evolution of the Pamir orogen. A calibration of DANSER's parameters with geomorphological data and a DEM as initial topography highlights the advantage of lateral incision. Preserving the channel width and reflecting incision peaks in narrow channels, this closes the huge gap between current orogen-scale incision models and observed topographies. River capturing models in a system of fault-bounded block rotations reaffirm the importance of the lateral incision routine for capturing events with channel initiation. The models show a low probability of river capturings with large deflection angles. While the probability of river capturing is directly depending on the uplift rate, the erodibility inside of a dip-slip fault speeds up headward erosion along the fault: The model's capturing speed increases within a fault. Coupling DANSER with the thermo-mechanical code SLIM 3D emphasizes the versatility of the SEC. While DANSER has minor influence on the lithospheric evolution of an indenter model, the brittle surface deformation is strongly affected by its sedimentation, widening a basin in between two forming orogens and also the southern part of the southern orogen to south, east and west.}, language = {en} } @phdthesis{Muldashev2017, author = {Muldashev, Iskander}, title = {Modeling of the great earthquake seismic cycles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398926}, school = {Universit{\"a}t Potsdam}, pages = {xii, 117}, year = {2017}, abstract = {The timing and location of the two largest earthquakes of the 21st century (Sumatra, 2004 and Tohoku 2011, events) greatly surprised the scientific community, indicating that the deformation processes that precede and follow great megathrust earthquakes remain enigmatic. During these phases before and after the earthquake a combination of multi-scale complex processes are acting simultaneously: Stresses built up by long-term tectonic motions are modified by sudden jerky deformations during earthquakes, before being restored by multiple ensuing relaxation processes. This thesis details a cross-scale thermomechanical model developed with the aim of simulating the entire subduction process from earthquake (1 minute) to million years' time scale, excluding only rupture propagation. The model employs elasticity, non-linear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences, and, by using an adaptive time-step algorithm, recreates the deformation process as observed naturally over single and multiple seismic cycles. The model is thoroughly tested by comparing results to those from known high- resolution solutions of generic modeling setups widely used in modeling of rupture propagation. It is demonstrated, that while not modeling rupture propagation explicitly, the modeling procedure correctly recognizes the appearance of instability (earthquake) and correctly simulates the cumulative slip at a fault during great earthquake by means of a quasi-dynamic approximation. A set of 2D models is used to study the effects of non-linear transient rheology on the postseismic processes following great earthquakes. Our models predict that the viscosity in the mantle wedge drops by 3 to 4 orders of magnitude during a great earthquake with magnitude above 9. This drop in viscosity results in spatial scales and timings of the relaxation processes following the earthquakes that are significantly different to previous estimates. These models replicate centuries long seismic cycles exhibited by the greatest earthquakes (like the Great Chile 1960 Earthquake) and are consistent with the major features of postseismic surface displacements recorded after the Great Tohoku Earthquake. The 2D models are also applied to study key factors controlling maximum magnitudes of earthquakes in subduction zones. Even though methods of instrumentally observing earthquakes at subduction zones have rapidly improved in recent decades, the characteristic recurrence interval of giant earthquakes (Mw>8.5) is much larger than the currently available observational record and therefore the necessary conditions for giant earthquakes are not clear. Statistical studies have recognized the importance of the slab shape and its surface roughness, state of the strain of the upper plate and thickness of sediments filling the trenches. In this thesis we attempt to explain these observations and to identify key controlling parameters. We test a set of 2D models representing great earthquake seismic cycles at known subduction zones with various known geometries, megathrust friction coefficients, and convergence rates implemented. We found that low-angle subduction (large effect) and thick sediments in the subduction channel (smaller effect) are the fundamental necessary conditions for generating giant earthquakes, while the change of subduction velocity from 10 to 3.5 cm/yr has a lower effect. Modeling results also suggest that having thick sediments in the subduction channel causes low static friction, resulting in neutral or slightly compressive deformation in the overriding plate for low-angle subduction zones. These modeling results agree well with observations for the largest earthquakes. The model predicts the largest possible earthquakes for subduction zones of given dipping angles. The predicted maximum magnitudes exactly threshold magnitudes of all known giant earthquakes of 20th and 21st centuries. The clear limitation of most of the models developed in the thesis is their 2D nature. Development of 3D models with comparable resolution and complexity will require significant advances in numerical techniques. Nevertheless, we conducted a series of low-resolution 3D models to study the interaction between two large asperities at a subduction interface separated by an aseismic gap of varying width. The novelty of the model is that it considers behavior of the asperities during multiple seismic cycles. As expected, models show that an aseismic gap with a narrow width could not prevent rupture propagation from one asperity to another, and that rupture always crosses the entire model. When the gap becomes too wide, asperities do not interact anymore and rupture independently. However, an interesting mode of interaction was observed in the model with an intermediate width of the aseismic gap: In this model the asperities began to stably rupture in anti-phase following multiple seismic cycles. These 3D modeling results, while insightful, must be considered preliminary because of the limitations in resolution. The technique developed in this thesis for cross-scale modeling of seismic cycles can be used to study the effects of multiple seismic cycles on the long-term deformation of the upper plate. The technique can be also extended to the case of continental transform faults and for the advanced 3D modeling of specific subduction zones. This will require further development of numerical techniques and adaptation of the existing advanced highly scalable parallel codes like LAMEM and ASPECT.}, language = {en} } @phdthesis{Farkas2022, author = {Farkas, Marton Pal}, title = {Hydraulic fracturing in hard rock - numerical studies from laboratory to reservoir scale}, doi = {10.25932/publishup-54934}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549343}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2022}, abstract = {Hydraulic-driven fractures play a key role in subsurface energy technologies across several scales. By injecting fluid at high hydraulic pressure into rock with intrinsic low permeability, in-situ stress field and fracture development pattern can be characterised as well as rock permeability can be enhanced. Hydraulic fracturing is a commercial standard procedure for enhanced oil and gas production of rock reservoirs with low permeability in petroleum industry. However, in EGS utilization, a major geological concern is the unsolicited generation of earthquakes due to fault reactivation, referred to as induced seismicity, with a magnitude large enough to be felt on the surface or to damage facilities and buildings. Furthermore, reliable interpretation of hydraulic fracturing tests for stress measurement is a great challenge for the energy technologies. Therefore, in this cumulative doctoral thesis the following research questions are investigated. (1): How do hydraulic fractures grow in hard rock at various scales?; (2): Which parameters control hydraulic fracturing and hydro-mechanical coupling?; and (3): How can hydraulic fracturing in hard rock be modelled? In the laboratory scale study, several laboratory hydraulic fracturing experiments are investigated numerically using Irazu2D that were performed on intact cubic Pocheon granite samples from South Korea applying different injection protocols. The goal of the laboratory experiments is to test the concept of cyclic soft stimulation which may enable sustainable permeability enhancement (Publication 1). In the borehole scale study, hydraulic fracturing tests are reported that were performed in boreholes located in central Hungary to determine the in-situ stress for a geological site investigation. At depth of about 540 m, the recorded pressure versus time curves in mica schist with low dip angle foliation show atypical evolution. In order to provide explanation for this observation, a series of discrete element computations using Particle Flow Code 2D are performed (Publication 2). In the reservoir scale study, the hydro-mechanical behaviour of fractured crystalline rock due to one of the five hydraulic stimulations at the Pohang Enhanced Geothermal site in South Korea is studied. Fluid pressure perturbation at faults of several hundred-meter lengths during hydraulic stimulation is simulated using FracMan (Publication 3). The doctoral research shows that the resulting hydraulic fracturing geometry will depend "locally", i.e. at the length scale of representative elementary volume (REV) and below that (sub-REV), on the geometry and strength of natural fractures, and "globally", i.e. at super-REV domain volume, on far-field stresses. Regarding hydro-mechanical coupling, it is suggested to define separate coupling relationship for intact rock mass and natural fractures. Furthermore, the relative importance of parameters affecting the magnitude of formation breakdown pressure, a parameter characterising hydro-mechanical coupling, is defined. It can be also concluded that there is a clear gap between the capacity of the simulation software and the complexity of the studied problems. Therefore, the computational time of the simulation of complex hydraulic fracture geometries must be reduced while maintaining high fidelity simulation results. This can be achieved either by extending the computational resources via parallelization techniques or using time scaling techniques. The ongoing development of used numerical models focuses on tackling these methodological challenges.}, language = {en} } @phdthesis{Neuharth2022, author = {Neuharth, Derek}, title = {Evolution of divergent and strike-slip boundaries in response to surface processes}, doi = {10.25932/publishup-54940}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549403}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 108}, year = {2022}, abstract = {Plate tectonics describes the movement of rigid plates at the surface of the Earth as well as their complex deformation at three types of plate boundaries: 1) divergent boundaries such as rift zones and mid-ocean ridges, 2) strike-slip boundaries where plates grind past each other, such as the San Andreas Fault, and 3) convergent boundaries that form large mountain ranges like the Andes. The generally narrow deformation zones that bound the plates exhibit complex strain patterns that evolve through time. During this evolution, plate boundary deformation is driven by tectonic forces arising from Earth's deep interior and from within the lithosphere, but also by surface processes, which erode topographic highs and deposit the resulting sediment into regions of low elevation. Through the combination of these factors, the surface of the Earth evolves in a highly dynamic way with several feedback mechanisms. At divergent boundaries, for example, tensional stresses thin the lithosphere, forcing uplift and subsequent erosion of rift flanks, which creates a sediment source. Meanwhile, the rift center subsides and becomes a topographic low where sediments accumulate. This mass transfer from foot- to hanging wall plays an important role during rifting, as it prolongs the activity of individual normal faults. When rifting continues, continents are eventually split apart, exhuming Earth's mantle and creating new oceanic crust. Because of the complex interplay between deep tectonic forces that shape plate boundaries and mass redistribution at the Earth's surface, it is vital to understand feedbacks between the two domains and how they shape our planet. In this study I aim to provide insight on two primary questions: 1) How do divergent and strike-slip plate boundaries evolve? 2) How is this evolution, on a large temporal scale and a smaller structural scale, affected by the alteration of the surface through erosion and deposition? This is done in three chapters that examine the evolution of divergent and strike-slip plate boundaries using numerical models. Chapter 2 takes a detailed look at the evolution of rift systems using two-dimensional models. Specifically, I extract faults from a range of rift models and correlate them through time to examine how fault networks evolve in space and time. By implementing a two-way coupling between the geodynamic code ASPECT and landscape evolution code FastScape, I investigate how the fault network and rift evolution are influenced by the system's erosional efficiency, which represents many factors like lithology or climate. In Chapter 3, I examine rift evolution from a three-dimensional perspective. In this chapter I study linkage modes for offset rifts to determine when fast-rotating plate-boundary structures known as continental microplates form. Chapter 4 uses the two-way numerical coupling between tectonics and landscape evolution to investigate how a strike-slip boundary responds to large sediment loads, and whether this is sufficient to form an entirely new type of flexural strike-slip basin.}, language = {en} } @phdthesis{Dannberg2016, author = {Dannberg, Juliane}, title = {Dynamics of mantle plumes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91024}, school = {Universit{\"a}t Potsdam}, pages = {162}, year = {2016}, abstract = {Mantle plumes are a link between different scales in the Earth's mantle: They are an important part of large-scale mantle convection, transporting material and heat from the core-mantle boundary to the surface, but also affect processes on a smaller scale, such as melt generation and transport and surface magmatism. When they reach the base of the lithosphere, they cause massive magmatism associated with the generation of large igneous provinces, and they can be related to mass extinction events (Wignall, 2001) and continental breakup (White and McKenzie, 1989). Thus, mantle plumes have been the subject of many previous numerical modelling studies (e.g. Farnetani and Richards, 1995; d'Acremont et al., 2003; Lin and van Keken, 2005; Sobolev et al., 2011; Ballmer et al., 2013). However, complex mechanisms, such as the development and implications of chemical heterogeneities in plumes, their interaction with mid-ocean ridges and global mantle flow, and melt ascent from the source region to the surface are still not very well understood; and disagreements between observations and the predictions of classical plume models have led to a challenge of the plume concept in general (Czamanske et al., 1998; Anderson, 2000; Foulger, 2011). Hence, there is a need for more sophisticated models that can explain the underlying physics, assess which properties and processes are important, explain how they cause the observations visible at the Earth's surface and provide a link between the different scales. In this work, integrated plume models are developed that investigate the effect of dense recycled oceanic crust on the development of mantle plumes, plume-ridge interaction under the influence of global mantle flow and melting and melt migration in form of two-phase flow. The presented analysis of these models leads to a new, updated picture of mantle plumes: Models considering a realistic depth-dependent density of recycled oceanic crust and peridotitic mantle material show that plumes with excess temperatures of up to 300 K can transport up to 15\% of recycled oceanic crust through the whole mantle. However, due to the high density of recycled crust, plumes can only advance to the base of the lithosphere directly if they have high excess temperatures, high plume volumes and the lowermost mantle is subadiabatic, or plumes rise from the top or edges of thermo-chemical piles. They might only cause minor surface uplift, and instead of the classical head-tail structure, these low-buoyancy plumes are predicted to be broad features in the lower mantle with much less pronounced plume heads. They can form a variety of shapes and regimes, including primary plumes directly advancing to the base of the lithosphere, stagnating plumes, secondary plumes rising from the core-mantle boundary or a pool of eclogitic material in the upper mantle and failing plumes. In the upper mantle, plumes are tilted and deflected by global mantle flow, and the shape, size and stability of the melting region is influenced by the distance from nearby plate boundaries, the speed of the overlying plate and the movement of the plume tail arriving from the lower mantle. Furthermore, the structure of the lithosphere controls where hot material is accumulated and melt is generated. In addition to melting in the plume tail at the plume arrival position, hot plume material flows upwards towards opening rifts, towards mid-ocean ridges and towards other regions of thinner lithosphere, where it produces additional melt due to decompression. This leads to the generation of either broad ridges of thickened magmatic crust or the separation into multiple thinner lines of sea mount chains at the surface. Once melt is generated within the plume, it influences its dynamics, lowering the viscosity and density, and while it rises the melt volume is increased up to 20\% due to decompression. Melt has the tendency to accumulate at the top of the plume head, forming diapirs and initiating small-scale convection when the plume reaches the base of the lithosphere. Together with the introduced unstable, high-density material produced by freezing of melt, this provides an efficient mechanism to thin the lithosphere above plume heads. In summary, this thesis shows that mantle plumes are more complex than previously considered, and linking the scales and coupling the physics of different processes occurring in mantle plumes can provide insights into how mantle plumes are influenced by chemical heterogeneities, interact with the lithosphere and global mantle flow, and are affected by melting and melt migration. Including these complexities in geodynamic models shows that plumes can also have broad plume tails, might produce only negligible surface uplift, can generate one or several volcanic island chains in interaction with a mid-ocean ridge, and can magmatically thin the lithosphere.}, language = {en} } @phdthesis{Liu2020, author = {Liu, Sibiao}, title = {Controls of foreland-deformation patterns in the orogen-foreland shortening system}, doi = {10.25932/publishup-44573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445730}, school = {Universit{\"a}t Potsdam}, pages = {vi, 150}, year = {2020}, abstract = {The Andean Plateau (Altiplano-Puna Plateau) of the southern Central Andes is the second-highest orogenic plateau on our planet after Tibet. The Andean Plateau and its foreland exhibit a pronounced segmentation from north to south regarding the style and magnitude of deformation. In the Altiplano (northern segment), more than 300 km of tectonic shortening has been recorded, which started during the Eocene. A well-developed thin-skinned thrust wedge located at the eastern flank of the plateau (Subandes) indicates a simple-shear shortening mode. In contrast, the Puna (southern segment) records approximately half of the shortening of the Altiplano - and the shortening started later. The tectonic style in the Puna foreland switches to a thick-skinned mode, which is related to pure-shear shortening. In this study, carried out in the framework of the StRATEGy project, high-resolution 2D thermomechanical models were developed to systematically investigate controls of deformation patterns in the orogen-foreland pair. The 2D and 3D models were subsequently applied to study the evolution of foreland deformation and surface topography in the Altiplano-Puna Plateau. The models demonstrate that three principal factors control the foreland-deformation patterns: (i) strength differences in the upper lithosphere between the orogen and its foreland, rather than a strength difference in the entire lithosphere; (ii) gravitational potential energy of the orogen (GPE) controlled by crustal and lithospheric thicknesses, and (iii) the strength and thickness of foreland-basin sediments. The high-resolution 2D models are constrained by observations and successfully reproduce deformation structures and surface topography of different segments of the Altiplano-Puna plateau and its foreland. The developed 3D models confirm these results and suggest that a relatively high shortening rate in the Altiplano foreland (Subandean foreland fold-and-thrust belt) is due to simple-shear shortening facilitated by thick and mechanically weak sediments, a process which requires a much lower driving force than the pure-shear shortening deformation mode in the adjacent broken foreland of the Puna, where these thick sedimentary basin fills are absent. Lower shortening rate in the Puna foreland is likely accommodated in the forearc by the slab retreat.}, language = {en} } @phdthesis{Korges2019, author = {Korges, Maximilian}, title = {Constraining the hydrology of intrusion-related ore deposits with fluid inclusions and numerical modeling}, doi = {10.25932/publishup-43484}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434843}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 99}, year = {2019}, abstract = {Magmatic-hydrothermal fluids are responsible for numerous mineralization types, including porphyry copper and granite related tin-tungsten (Sn-W) deposits. Ore formation is dependent on various factors, including, the pressure and temperature regime of the intrusions, the chemical composition of the magma and hydrothermal fluids, and fluid rock interaction during the ascent. Fluid inclusions have potential to provide direct information on the temperature, salinity, pressure and chemical composition of fluids responsible for ore formation. Numerical modeling allows the parametrization of pluton features that cannot be analyzed directly via geological observations. Microthermometry of fluid inclusions from the Zinnwald Sn-W deposit, Erzgebirge, Germany / Czech Republic, provide evidence that the greisen mineralization is associated with a low salinity (2-10 wt.\% NaCl eq.) fluid with homogenization temperatures between 350°C and 400°C. Quartzes from numerous veins are host to inclusions with the same temperatures and salinities, whereas cassiterite- and wolframite-hosted assemblages with slightly lower temperatures (around 350°C) and higher salinities (ca. 15 wt. NaCl eq.). Further, rare quartz samples contained boiling assemblages consisting of coexisting brine and vapor phases. The formation of ore minerals within the greisen is driven by invasive fluid-rock interaction, resulting in the loss of complexing agents (Cl-) leading to precipitation of cassiterite. The fluid inclusion record in the veins suggests boiling as the main reason for cassiterite and wolframite mineralization. Ore and coexisting gangue minerals hosted different types of fluid inclusions where the beginning boiling processes are solely preserved by the ore minerals emphasizing the importance of microthermometry in ore minerals. Further, the study indicates that boiling as a precipitation mechanism can only occur in mineralization related to shallow intrusions whereas deeper plutons prevent the fluid from boiling and can therefore form tungsten mineralization in the distal regions. The tin mineralization in the H{\"a}mmerlein deposit, Erzgebirge, Germany, occurs within a skarn horizon and the underlying schist. Cassiterite within the skarn contains highly saline (30-50 wt\% NaCl eq.) fluid inclusions, with homogenization temperatures up to 500°C, whereas cassiterites from the schist and additional greisen samples contain inclusions of lower salinity (~5 wt\% NaCl eq.) and temperature (between 350 and 400°C). Inclusions in the gangue minerals (quartz, fluorite) preserve homogenization temperatures below 350°C and sphalerite showed the lowest homogenization temperatures (ca. 200°C) whereby all minerals (cassiterite from schist and greisen, gangue minerals and sphalerite) show similar salinity ranges (2-5 wt\% NaCl eq.). Similar trace element contents and linear trends in the chemistry of the inclusions suggest a common source fluid. The inclusion record in the H{\"a}mmerlein deposit documents an early exsolution of hot brines from the underlying granite which is responsible for the mineralization hosted by the skarn. Cassiterites in schist and greisen are mainly forming due to fluid-rock interaction at lower temperatures. The low temperature inclusions documented in the sphalerite mineralization as well as their generally low trace element composition in comparison to the other minerals suggests that their formation was induced by mixing with meteoric fluids. Numerical simulations of magma chambers and overlying copper distribution document the importance of incremental growth by sills. We analyzed the cooling behavior at variable injection intervals as well as sill thicknesses. The models suggest that magma accumulation requires volumetric injection rates of at least 4 x 10-4 km³/y. These injection rates are further needed to form a stable magmatic-hydrothermal fluid plume above the magma chamber to ensure a constant copper precipitation and enrichment within a confined location in order to form high-grade ore shells within a narrow geological timeframe between 50 and 100 kyrs as suggested for porphyry copper deposits. The highest copper enrichment can be found in regions with steep temperature gradients, typical of regions where the magmatic-hydrothermal fluid meets the cooler ambient fluids.}, language = {en} } @phdthesis{Codeco2019, author = {Codeco, Marta Sofia Ferreira}, title = {Constraining the hydrology at Minas da Panasqueira W-Sn-Cu deposit, Portugal}, doi = {10.25932/publishup-42975}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429752}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 232}, year = {2019}, abstract = {This dissertation combines field and geochemical observations and analyses with numerical modeling to understand the formation of vein-hosted Sn-W ore in the Panasqueira deposit of Portugal, which is among the ten largest worldwide. The deposit is located above a granite body that is altered by magmatic-hydrothermal fluids in its upper part (greisen). These fluids are thought to be the source of metals, but that was still under debate. The goal of this study is to determine the composition and temperature of hydrothermal fluids at Panasqueira, and with that information to construct a numerical model of the hydrothermal system. The focus is on analysis of the minerals tourmaline and white mica, which formed during mineralization and are widespread throughout the deposit. Tourmaline occurs mainly in alteration zones around mineralized veins and is less abundant in the vein margins. White mica is more widespread. It is abundant in vein margins as well as alteration zones, and also occurs in the granite greisen. The laboratory work involved in-situ microanalysis of major- and trace elements in tourmaline and white mica, and boron-isotope analysis in both minerals by secondary ion mass spectrometry (SIMS). The boron-isotope composition of tourmaline and white mica suggests a magmatic source. Comparison of hydrothermally-altered and unaltered rocks from drill cores shows that the ore metals (W, Sn, Cu, and Zn) and As, F, Li, Rb, and Cs were introduced during the alteration. Most of these elements are also enriched in tourmaline and mica, which confirms their potential value as exploration guides to Sn-W ores elsewhere. The thermal evolution of the hydrothermal system was estimated by B-isotope exchange thermometry and the Ti-in-quartz method. Both methods yielded similar temperatures for the early hydrothermal phase: 430° to 460°C for B-isotopes and 503° ± 24°C for Ti-in-quartz. Mineral pairs from a late fault zone yield significantly lower median temperatures of 250°C. The combined results of thermometry with variations in chemical and B-isotope composition of tourmaline and mica suggest that a similar magmatic-hydrothermal fluid was active at all stages of mineralization. Mineralization in the late stage shows the same B-isotope composition as in the main stage despite a ca. 250°C cooling, which supports a multiple injection model of magmatic-hydrothermal fluids. Two-dimensional numerical simulations of convection in a multiphase NaCl hydrothermal system were conducted: (a) in order to test a new approach (lower dimensional elements) for flow through fractures and faults and (b) in order to identify conditions for horizontal fluid flow as observed in the flat-lying veins at Panasqueira. The results show that fluid flow over an intrusion (heat and fluid source) develops a horizontal component if there is sufficient fracture connectivity. Late, steep fault zones have been identified in the deposit area, which locally contain low-temperature Zn-Pb mineralization. The model results confirm that the presence of subvertical faults with enhanced permeability play a crucial role in the ascent of magmatic fluids to the surface and the recharge of meteoric waters. Finally, our model results suggest that recharge of meteoric fluids and mixing processes may be important at later stages, while flow of magmatic fluids dominate the early stages of the hydrothermal fluid circulation.}, language = {en} }