@article{LaiFengHeietal.2019, author = {Lai, Feili and Feng, Jianrui and Hei, Tobias and Wang, Gui-Chang and Adler, Peter and Antonietti, Markus and Oschatz, Martin}, title = {Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors}, series = {Energy Storage Materials}, volume = {20}, journal = {Energy Storage Materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8297}, doi = {10.1016/j.ensm.2019.04.035}, pages = {188 -- 195}, year = {2019}, abstract = {Strong metal oxide-support interaction is crucial to activate high energy storage modes of carbon-supported hybrid electrodes in ionic liquid-based supercapacitors. Although it is known that conductive supports can influence the electrochemical properties of metal oxides, insights into how metal oxide-support interactions can be exploited to optimize joint energy storage properties are lacking. We report the junction between alpha-Fe2O3 nanosplotches and phosphorus-doped ordered mesoporous carbon (CMK-3-P) with strong covalent anchoring of the metal oxide. The oxide-carbon interaction in CMK-3-P-Fe2O3 is strengthening the junction and charge transfer between Fe2O3 and CMK-3-P. It enhances energy storage by intensifying the interaction between ionic liquid ions and the surface of the electrode. Density functional theory simulations reveal that the strong metal oxide-support interaction increases the adsorption energy of ionic liquid to -4.77 eV as compared to -3.85 eV for a CMK-3Fe(2)O(3) hybrid with weaker binding. In spite of the lower specific surface area and apparently similar energy storage mode, the CMK-3-P-Fe2O3 exhibits superior electrical double-layer capacitor performance with a specific capacitance of 179 F g(-1) at 2 mV s(-1) (0-3.5 V) in comparison to Fe2O3-free CMK-3 and CMK-3-P reference materials. This principle for design of hybrid electrodes can be applicable for future rational design of stable metal oxide-support electrodes for advanced energy storage.}, language = {en} }