@article{MoellerPostHensen2002, author = {M{\"o}ller, Andreas and Post, Nicholas J. and Hensen, Bastiaan J.}, title = {Crustal residence history and Gamet Sm-Nd ages of high-grade metamorphic rocks from the Windmill Islands area, East Antarctica}, year = {2002}, abstract = {Nd whole-rock data from the Windmill Islands area yield early Proterozoic to middle Archaean Nd model ages. These crustal residence times are consistent with regional correlations with other parts of Antarctica (Bunger Hills, Denman Glacier area) and the Albany-Fraser Orogen of south-western Australia during the Mid-Proterozoic and thus support reconstructions with a continuous Mid-Proterozoic orogen in these areas. The new Nd isotope data provide strong evidence that no age boundary exists between the higher- and lower-grade parts of the Windmill Islands area, and that the metamorphic complex represents a single terrane with a common crustal history. The data support the notion of a time- link between the occurrence of intrusive charnockites (C-type magmas) and high-grade metamorphism. The magmatic rocks and orthogneisses in the area are interpreted to have a mixed source consisting of older crustal components, i.e. older sediments (ca. 3.2-2.6 Ga) and a younger mafic component (ca. 1.9 Ga). Two garnet Sm-Nd isochrons yield ages of 1156±17 Ma and 1137±2.5 Ma and are identical to SHRIMP U-Pb results on monazite from these samples. A garnet Sm-Nd age of 1123±13 Ma for the Ford granite is significantly younger than the SHRIMP U-Pb zircon age for this sample. The difference relates to the different closure temperature of each isotopic system and is thus interpreted as initial cooling after granulite facies metamorphism. Keywords. East Antarctica - Granulites - Garnet-whole rock isochrons - Intrusive charnockite - Nd model ages}, language = {en} } @article{MoellerO'BrienKennedyetal.2002, author = {M{\"o}ller, Andreas and O'Brien, Patrick J. and Kennedy, Allen and Kr{\"o}ner, Alfred}, title = {Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway) : constraints for Pb diffusion in zircon}, year = {2002}, abstract = {SHRIMP U-Pb ages have been obtained for zircon in granitic gneisses from the aureole of the Rogaland anorthosite-norite intrusive complex, both from the ultrahigh temperature (UHT; >900 °C pigeonite-in) zone and from outside the hypersthene-in isograd. Magmatic and metamorphic segments of composite zircon were characterised on the basis of electron backscattered electron and cathodoluminescence images plus trace element analysis. A sample from outside the UHT zone has magmatic cores with an age of 1034 ± 7 Ma (2{sigma}, n = 8) and 1052 ± 5 Ma (1{sigma}, n = 1) overgrown by M1 metamorphic rims giving ages between 1020 ± 7 and 1007 ± 5 Ma.In contrast, samples from the UHT zone exhibit four major age groups:(1) magmatic cores yielding ages over 1500 Ma(2) magmatic cores giving ages of 1034 ± 13 Ma (2{sigma}, n = 4) and 1056 ± 10 Ma (1{sigma}, n = 1)(3) metamorphic overgrowths ranging in age between 1017 ± 6 Ma and 992 ± 7 Ma (1{sigma}) corresponding to the regional M1 Sveconorwegian granulite facies metamorphism, and(4) overgrowths corresponding to M2 UHT contact metamorphism giving values of 922 ± 14 Ma (2{sigma}, n = 6). Recrystallized areas in zircon from both areas define a further age group at 974 ± 13 Ma (2{sigma}, n = 4).This study presents the first evidence from Rogaland for new growth of zircon resulting from UHT contact metamorphism. More importantly, it shows the survival of magmatic and regional metamorphic zircon relics in rocks that experienced a thermal overprint of c. 950 °C for at least 1 Myr. Magmatic and different metamorphic zones in the same zircon are sharply bounded and preserve original crystallization age information, a result inconsistent with some experimental data on Pb diffusion in zircon which predict measurable Pb diffusion under such conditions. The implication is that resetting of zircon ages by diffusion during M2 was negligible in these dry granulite facies rocks. Imaging and Th/U-Y systematics indicate that the main processes affecting zircon were dissolution-reprecipitation in a closed system and solid-state recrystallization during and soon after M1.}, language = {en} }