@article{GschwindKressigLacroixetal.2013, author = {Gschwind, Yves J. and Kressig, Reto W. and Lacroix, Andre and M{\"u}hlbauer, Thomas and Pfenninger, Barbara and Granacher, Urs}, title = {A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults - study protocol for a randomized controlled trial}, series = {BMC geriatrics}, volume = {13}, journal = {BMC geriatrics}, number = {4}, publisher = {BioMed Central}, address = {London}, issn = {1471-2318}, doi = {10.1186/1471-2318-13-105}, pages = {13}, year = {2013}, abstract = {Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.}, language = {en} } @article{JafarnezhadgeroShadMajlesietal.2017, author = {Jafarnezhadgero, Amir Ali and Shad, Morteza Madadi and Majlesi, Mahdi and Granacher, Urs}, title = {A comparison of running kinetics in children with and without genu varus}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {9}, publisher = {PLoS}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0185057}, year = {2017}, abstract = {Introduction Varus knee alignment has been identified as a risk factor for the progression of medial knee osteoarthritis. However, the underlying mechanisms have not been elucidated yet in children. Thus, the aims of the present study were to examine differences in ground reaction forces, loading rate, impulses, and free moment values during running in children with and without genu varus. Methods Thirty-six boys aged 9-14 volunteered to participate in this study. They were divided in two age-matched groups (genu varus versus healthy controls). Body weight adjusted three dimensional kinetic data (Fx, Fy, Fz) were collected during running at preferred speed using two Kistler force plates for the dominant and non-dominant limb. Results Individuals with knee genu varus produced significantly higher (p = .01; d = 1.09; 95\%) body weight adjusted ground reaction forces in the lateral direction (Fx) of the dominant limb compared to controls. On the non-dominant limb, genu varus patients showed significantly higher body weight adjusted ground reaction forces values in the lateral (p = .01; d = 1.08; 86\%) and medial (p < .001; d = 1.55; 102\%) directions (Fx). Further, genu varus patients demonstrated 55\% and 36\% greater body weight adjusted loading rates in the dominant (p < .001; d = 2.09) and non-dominant (p < .001; d = 1.02) leg, respectively. No significant between-group differences were observed for adjusted free moment values (p>.05). Discussion Higher mediolateral ground reaction forces and vertical loading rate amplitudes in boys with genu varus during running at preferred running speed may accelerate the development of progressive joint degeneration in terms of the age at knee osteoarthritis onset. Therefore, practitioners and therapists are advised to conduct balance and strength training programs to improve lower limb alignment and mediolateral control during dynamic movements.}, language = {en} } @article{JafamezhadgeroShadMajlesietal.2017, author = {Jafamezhadgero, Amir Ali and Shad, Morteza Madadi and Majlesi, Mahdi and Granacher, Urs}, title = {A comparison of running kinetics in children with and without genu varus: A cross sectional study}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0185057}, pages = {15}, year = {2017}, abstract = {Introduction Varus knee alignment has been identified as a risk factor for the progression of medial knee osteoarthritis. However, the underlying mechanisms have not been elucidated yet in children. Thus, the aims of the present study were to examine differences in ground reaction forces, loading rate, impulses, and free moment values during running in children with and without genu varus. Methods Thirty-six boys aged 9-14 volunteered to participate in this study. They were divided in two age-matched groups (genu varus versus healthy controls). Body weight adjusted three dimensional kinetic data (Fx, Fy, Fz) were collected during running at preferred speed using two Kistler force plates for the dominant and non-dominant limb. Results Individuals with knee genu varus produced significantly higher (p = .01; d = 1.09; 95\%) body weight adjusted ground reaction forces in the lateral direction (Fx) of the dominant limb compared to controls. On the non-dominant limb, genu varus patients showed significantly higher body weight adjusted ground reaction forces values in the lateral (p = .01; d = 1.08; 86\%) and medial (p < .001; d = 1.55; 102\%) directions (Fx). Further, genu varus patients demonstrated 55\% and 36\% greater body weight adjusted loading rates in the dominant (p < .001; d = 2.09) and non-dominant (p < .001; d = 1.02) leg, respectively. No significant between-group differences were observed for adjusted free moment values (p>.05). Discussion Higher mediolateral ground reaction forces and vertical loading rate amplitudes in boys with genu varus during running at preferred running speed may accelerate the development of progressive joint degeneration in terms of the age at knee osteoarthritis onset. Therefore, practitioners and therapists are advised to conduct balance and strength training programs to improve lower limb alignment and mediolateral control during dynamic movements.}, language = {en} } @article{SlimaniParavlicGranacher2018, author = {Slimani, Maamer and Paravlic, Armin and Granacher, Urs}, title = {A Meta-Analysis to Determine Strength Training Related Dose-Response Relationships for Lower-Limb Muscle Power Development in Young Athletes}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01155}, pages = {1 -- 14}, year = {2018}, abstract = {It is well-documented that strength training (ST) improves measures of muscle strength in young athletes. Less is known on transfer effects of ST on proxies of muscle power and the underlying dose-response relationships. The objectives of this meta-analysis were to quantify the effects of ST on lower limb muscle power in young athletes and to provide dose-response relationships for ST modalities such as frequency, intensity, and volume. A systematic literature search of electronic databases identified 895 records. Studies were eligible for inclusion if (i) healthy trained children (girls aged 6-11 y, boys aged 6-13 y) or adolescents (girls aged 12-18 y, boys aged 14-18 y) were examined, (ii) ST was compared with an active control, and (iii) at least one proxy of muscle power [squat jump (SJ) and countermovement jump height (CMJ)] was reported. Weighted mean standardized mean differences (SMDwm) between subjects were calculated. Based on the findings from 15 statistically aggregated studies, ST produced significant but small effects on CMJ height (SMDwm = 0.65; 95\% CI 0.34-0.96) and moderate effects on SJ height (SMDwm = 0.80; 95\% CI 0.23-1.37). The sub-analyses revealed that the moderating variable expertise level (CMJ height: p = 0.06; SJ height: N/A) did not significantly influence ST-related effects on proxies of muscle power. "Age" and "sex" moderated ST effects on SJ (p = 0.005) and CMJ height (p = 0.03), respectively. With regard to the dose-response relationships, findings from the meta-regression showed that none of the included training modalities predicted ST effects on CMJ height. For SJ height, the meta-regression indicated that the training modality "training duration" significantly predicted the observed gains (p = 0.02), with longer training durations (>8 weeks) showing larger improvements. This meta-analysis clearly proved the general effectiveness of ST on lower-limb muscle power in young athletes, irrespective of the moderating variables. Dose-response analyses revealed that longer training durations (>8 weeks) are more effective to improve SJ height. No such training modalities were found for CMJ height. Thus, there appear to be other training modalities besides the ones that were included in our analyses that may have an effect on SJ and particularly CMJ height. ST monitoring through rating of perceived exertion, movement velocity or force-velocity profile could be promising monitoring tools for lower-limb muscle power development in young athletes.}, language = {en} } @article{ChaabeneNegraCapranicaetal.2019, author = {Chaabene, Helmi and Negra, Yassine and Capranica, Laura and Prieske, Olaf and Granacher, Urs}, title = {A Needs Analysis of Karate Kumite With Recommendations for Performance Testing and Training}, series = {Strength and conditioning journal}, volume = {41}, journal = {Strength and conditioning journal}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1524-1602}, doi = {10.1519/SSC.0000000000000445}, pages = {35 -- 46}, year = {2019}, abstract = {An effective training program needs to be customized to the specific demands of the redpective sport. Therefore, it is important to conduct a needs analysis to gain information on the unique characteristics of the sport. The objectives of thes review were (A) to conduct a systematic needs analysis of karate kumite and (B) to provide practical recommendations for sport-specific performance testing and training of karate kumite athletes.}, language = {en} } @article{PeitzBehringerGranacher2018, author = {Peitz, Matti and Behringer, Michael and Granacher, Urs}, title = {A systematic review on the effects of resistance and plyometric training on physical fitness in youth}, series = {PlOS ONE}, volume = {13}, journal = {PlOS ONE}, number = {10}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0205525}, pages = {44}, year = {2018}, abstract = {Introduction To date, several meta-analyses clearly demonstrated that resistance and plyometric training are effective to improve physical fitness in children and adolescents. However, a methodological limitation of meta-analyses is that they synthesize results from different studies and hence ignore important differences across studies (i.e., mixing apples and oranges). Therefore, we aimed at examining comparative intervention studies that assessed the effects of age, sex, maturation, and resistance or plyometric training descriptors (e.g., training intensity, volume etc.) on measures of physical fitness while holding other variables constant. Methods To identify relevant studies, we systematically searched multiple electronic databases (e.g., PubMed) from inception to March 2018. We included resistance and plyometric training studies in healthy young athletes and non-athletes aged 6 to 18 years that investigated the effects of moderator variables (e.g., age, maturity, sex, etc.) on components of physical fitness (i.e., muscle strength and power). Results Our systematic literature search revealed a total of 75 eligible resistance and plyometric training studies, including 5,138 participants. Mean duration of resistance and plyometric training programs amounted to 8.9 ± 3.6 weeks and 7.1±1.4 weeks, respectively. Our findings showed that maturation affects plyometric and resistance training outcomes differently, with the former eliciting greater adaptations pre-peak height velocity (PHV) and the latter around- and post-PHV. Sex has no major impact on resistance training related outcomes (e.g., maximal strength, 10 repetition maximum). In terms of plyometric training, around-PHV boys appear to respond with larger performance improvements (e.g., jump height, jump distance) compared with girls. Different types of resistance training (e.g., body weight, free weights) are effective in improving measures of muscle strength (e.g., maximum voluntary contraction) in untrained children and adolescents. Effects of plyometric training in untrained youth primarily follow the principle of training specificity. Despite the fact that only 6 out of 75 comparative studies investigated resistance or plyometric training in trained individuals, positive effects were reported in all 6 studies (e.g., maximum strength and vertical jump height, respectively). Conclusions The present review article identified research gaps (e.g., training descriptors, modern alternative training modalities) that should be addressed in future comparative studies.}, language = {en} } @article{HammamiChaabeneKharratetal.2021, author = {Hammami, Raouf and Chaabene, Helmi and Kharrat, Fatma and Werfelli, Hanen and Duncan, Michael and Rebai, Haithem and Granacher, Urs}, title = {Acute effects of different balance exercise types on selected measures of physical fitness in youth female volleyball players}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {13}, journal = {BMC Sports Science, Medicine and Rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {1758-2555}, doi = {10.1186/s13102-021-00249-5}, pages = {8}, year = {2021}, abstract = {Background Earlier studies have shown that balance training (BT) has the potential to induce performance enhancements in selected components of physical fitness (i.e., balance, muscle strength, power, speed). While there is ample evidence on the long-term effects of BT on components of physical fitness in youth, less is known on the short-term or acute effects of single BT sessions on selected measures of physical fitness. Objective To examine the acute effects of different balance exercise types on balance, change-of-direction (CoD) speed, and jump performance in youth female volleyball players. Methods Eleven female players aged 14 years participated in this study. Three types of balance exercises (i.e., anterior, posterolateral, rotational type) were conducted in randomized order. For each exercise, 3 sets including 5 repetitions were performed. Before and after the performance of the balance exercises, participants were tested for their static balance (center of pressure surface area [CoP SA] and velocity [CoP V]) on foam and firm surfaces, CoD speed (T-Half test), and vertical jump height (countermovement jump [CMJ] height). A 3 (condition: anterior, mediolateral, rotational balance exercise type) × 2 (time: pre, post) analysis of variance was computed with repeated measures on time. Results Findings showed no significant condition × time interactions for all outcome measures (p > 0.05). However, there were small main effects of time for CoP SA on firm and foam surfaces (both d = 0.38; all p < 0.05) with no effect for CoP V on both surface conditions (p > 0.05). For CoD speed, findings showed a large main effect of time (d = 0.91; p < 0.001). However, for CMJ height, no main effect of time was observed (p > 0.05). Conclusions Overall, our results indicated small-to-large changes in balance and CoD speed performances but not in CMJ height in youth female volleyball players, regardless of the balance exercise type. Accordingly, it is recommended to regularly integrate balance exercises before the performance of sport-specific training to optimize performance development in youth female volleyball players.}, language = {en} } @article{WerfelliHammamiSelmietal.2021, author = {Werfelli, Hanen and Hammami, Raouf and Selmi, Mohamed Amine and Selmi, Walid and Gabrilo, Goran and Clark, Cain C. T. and Duncan, Michael and Sekulic, Damir and Granacher, Urs and Rebai, Haithem}, title = {Acute Effects of Different Plyometric and Strength Exercises on Balance Performance in Youth Weightlifters}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.716981}, pages = {9}, year = {2021}, abstract = {Background: High-intensity muscle actions have the potential to temporarily improve the performance which has been denoted as postactivation performance enhancement. Objectives: This study determined the acute effects of different stretch-shortening (fast vs. low) and strength (dynamic vs. isometric) exercises executed during one training session on subsequent balance performance in youth weightlifters. Materials and Methods: Sixteen male and female young weightlifters, aged 11.3±0.6years, performed four strength exercise conditions in randomized order, including dynamic strength (DYN; 3 sets of 3 repetitions of 10 RM) and isometric strength exercises (ISOM; 3 sets of maintaining 3s of 10 RM of back-squat), as well as fast (FSSC; 3 sets of 3 repetitions of 20-cm drop-jumps) and slow (SSSC; 3 sets of 3 hurdle jumps over a 20-cm obstacle) stretch-shortening cycle protocols. Balance performance was tested before and after each of the four exercise conditions in bipedal stance on an unstable surface (i.e., BOSU ball with flat side facing up) using two dependent variables, i.e., center of pressure surface area (CoP SA) and velocity (CoP V). Results: There was a significant effect of time on CoP SA and CoP V [F(1,60)=54.37, d=1.88, p<0.0001; F(1,60)=9.07, d=0.77, p=0.003]. In addition, a statistically significant effect of condition on CoP SA and CoP V [F(3,60)=11.81, d=1.53, p<0.0001; F(3,60)=7.36, d=1.21, p=0.0003] was observed. Statistically significant condition-by-time interactions were found for the balance parameters CoP SA (p<0.003, d=0.54) and CoP V (p<0.002, d=0.70). Specific to contrast analysis, all specified hypotheses were tested and demonstrated that FSSC yielded significantly greater improvements than all other conditions in CoP SA and CoP V [p<0.0001 (d=1.55); p=0.0004 (d=1.19), respectively]. In addition, FSSC yielded significantly greater improvements compared with the two conditions for both balance parameters [p<0.0001 (d=2.03); p<0.0001 (d=1.45)]. Conclusion: Fast stretch-shortening cycle exercises appear to be more effective to improve short-term balance performance in young weightlifters. Due to the importance of balance for overall competitive achievement in weightlifting, it is recommended that young weightlifters implement dynamic plyometric exercises in the fast stretch-shortening cycle during the warm-up to improve their balance performance.}, language = {en} } @article{LesinskiMuehlbauerBueschetal.2013, author = {Lesinski, Melanie and M{\"u}hlbauer, Thomas and Buesch, Dirk and Granacher, Urs}, title = {Acute Effects of Postactivation Potentiation on Strength and Speed Performance in Athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {27}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0033-1335414}, pages = {147 -- 155}, year = {2013}, abstract = {Background: The contractile history of a muscle or a muscle group can result in an acute enhancement of subsequent muscle force output. This phenomenon is referred to as postactivation potentiation (PAP) and it was frequently substantiated in original research manuscripts, systematic literature reviews, and meta-analyses. However, there is a lack in the literature regarding precise dose-response relations. This literature review describes the main determinants of PAP effects and additionally presents the state of the art regarding the acute effects of PAP protocols on measures of strength, power, and speed in subelite and elite athletes of different sport disciplines. Furthermore, an attempt is made to demonstrate evidence-based information concerning the design of effective PAP protocols. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Google Scholar (1995 - March 2013). In total, 23 studies met the inclusionary criteria for review. Results: Findings from our literature review indicate that various conditioning activities produce acute PAP effects in subelite and particularly elite athletes. More specifically, conditioning activities that are characterised by multiple sets, moderate to high intensities (60 - 84 \% of the one repetition maximum), and rest intervals of 7 - 10 min. following the conditioning activity have the potential to induce short-term improvements in muscle force output and sports performance. Conclusion: It is recommended that subelite and particularly elite athletes from strength, power, and speed disciplines apply specifically tailored conditioning activities during the acute preparation process for competition to induce performance enhancing PAP effects.}, language = {de} } @article{ZinkeGebelGranacheretal.2019, author = {Zinke, Fridolin and Gebel, Arnd and Granacher, Urs and Prieske, Olaf}, title = {Acute Effects of Short-Term Local Tendon Vibration on Plantar Flexor Torque, Muscle Contractile Properties, Neuromuscular and Brain Activity in Young Athletes}, series = {Journal of sports science \& medicine}, volume = {18}, journal = {Journal of sports science \& medicine}, number = {2}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, pages = {327 -- 336}, year = {2019}, abstract = {The purpose of this study was to examine the acute effects of short-term Achilles tendon vibration on plantar flexor torque, twitch contractile properties as well as muscle and cortical activity in young athletes. Eleven female elite soccer players aged 15.6 +/- 0.5 years participated in this study. Three different conditions were applied in randomized order: Achilles tendon vibration (80 Hz) for 30 and 300 s, and a passive control condition (300 s). Tests at baseline and following conditions included the assessment of peak plantar flexor torque during maximum voluntary contraction, electrically evoked muscle twitches (e.g., potentiated twitch peak torque [PT]), and electromyographic (EMG) activity of the plantar flexors. Additionally, electroencephalographic (EEG) activity of the primary motor and somatosensory cortex were assessed during a submaximal dynamic concentric-eccentric plantar flexion exercise using an elastic rubber band. Large-sized main effects of condition were found for EEG absolute alpha-1 and beta-1 band power (p <= 0.011; 1.5 <= d <= 2.6). Post-hoc tests indicated that alpha-1 power was significantly lower at 30 and 300 s (p = 0.009; d = 0.8) and beta-1 power significantly lower at 300 s (p < 0.001; d = 0.2) compared to control condition. No significant effect of condition was found for peak plantar flexor torque, electrical evoked muscle twitches, and EMG activity. In conclusion, short-term local Achilles tendon vibration induced lower brain activity (i.e., alpha-1 and beta-1 band power) but did not affect lower limb peak torque, twitch contractile properties, and muscle activity. Lower brain activity following short-term local Achilles tendon vibration may indicate improved cortical function during a submaximal dynamic exercise in female young soccer players.}, language = {en} } @article{ChaabeneBehmNegraetal.2019, author = {Chaabene, Helmi and Behm, David George and Negra, Yassine and Granacher, Urs}, title = {Acute Effects of Static Stretching on Muscle Strength and Power}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01468}, pages = {8}, year = {2019}, abstract = {The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers' knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1-2\%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0-7.5\%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition.}, language = {en} } @article{FuehnerGranacherGolleetal.2021, author = {F{\"u}hner, Thea Heidi and Granacher, Urs and Golle, Kathleen and Kliegl, Reinhold}, title = {Age and sex effects in physical fitness components of 108,295 third graders including 515 primary schools and 9 cohorts}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Nature Portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-97000-4}, pages = {1 -- 13}, year = {2021}, abstract = {Children's physical fitness development and related moderating effects of age and sex are well documented, especially boys' and girls' divergence during puberty. The situation might be different during prepuberty. As girls mature approximately two years earlier than boys, we tested a possible convergence of performance with five tests representing four components of physical fitness in a large sample of 108,295 eight-year old third-graders. Within this single prepubertal year of life and irrespective of the test, performance increased linearly with chronological age, and boys outperformed girls to a larger extent in tests requiring muscle mass for successful performance. Tests differed in the magnitude of age effects (gains), but there was no evidence for an interaction between age and sex. Moreover, "physical fitness" of schools correlated at r = 0.48 with their age effect which might imply that "fit schools" promote larger gains; expected secular trends from 2011 to 2019 were replicated.}, language = {en} } @article{StelzelSchauenburgRappetal.2017, author = {Stelzel, Christine and Schauenburg, Gesche and Rapp, Michael Armin and Heinzel, Stephan and Granacher, Urs}, title = {Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control}, series = {Frontiers in psychology}, volume = {8}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.00613}, year = {2017}, abstract = {Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19-30 and 66-84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks.}, language = {en} } @article{StelzelSchauenburgRappetal.2017, author = {Stelzel, Christine and Schauenburg, Gesche and Rapp, Michael Armin and Heinzel, Stephan and Granacher, Urs}, title = {Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control-a Pilot Study}, series = {Frontiers in psychology}, volume = {8}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.00613}, pages = {15}, year = {2017}, abstract = {Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19-30 and 66-84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input-and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks.}, language = {en} } @article{JararnezhadgeroMamashliGranacher2021, author = {Jararnezhadgero, AmirAli and Mamashli, Elaheh and Granacher, Urs}, title = {An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.654755}, pages = {1 -- 15}, year = {2021}, abstract = {Background: The prevalence of diabetes worldwide is predicted to increase from 2.8\% in 2000 to 4.4\% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45-65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40-55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001-0.037; d = 0.56-1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001-0.044; d = 0.54-0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics.}, language = {en} } @article{FuehnerKlieglArntzetal.2020, author = {F{\"u}hner, Thea Heidi and Kliegl, Reinhold and Arntz, Fabian and Kriemler, Susi and Granacher, Urs}, title = {An update on secular trends in physical fitness of children and adolescents from 1972 to 2015}, series = {Sports medicine}, volume = {51}, journal = {Sports medicine}, number = {2}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-020-01373-x}, pages = {303 -- 320}, year = {2020}, abstract = {Background There is evidence that physical fitness of children and adolescents (particularly cardiorespiratory endurance) has declined globally over the past decades. Ever since the first reports on negative trends in physical fitness, efforts have been undertaken by for instance the World Health Organization (WHO) to promote physical activity and fitness in children and adolescents. Therefore, it is timely to re-analyze the literature to examine whether previous reports on secular declines in physical fitness are still detectable or whether they need to be updated. Objectives The objective of this systematic review is to provide an 'update' on secular trends in selected components of physical fitness (i.e., cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed) in children and adolescents aged 6-18 years. Data Sources A systematic computerized literature search was conducted in the electronic databases PubMed and Web of Science to locate studies that explicitly reported secular trends in physical fitness of children and adolescents. Study Eligibility Criteria Studies were included in this systematic review if they examined secular trends between at least two time points across a minimum of 5 years. In addition, they had to document secular trends in any measure of cardiorespiratory endurance, relative muscle strength, proxies of muscle power or speed in apparently healthy children and adolescents aged 6-18 years. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: nation, physical fitness component (cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed), chronological age, sex (boys vs. girls), and year of assessment. Scores were standardized (i.e., converted to z scores) with sample-weighted means and standard deviations, pooled across sex and year of assessment within cells defined by study, test, and children's age. Results The original search identified 524 hits. In the end, 22 studies met the inclusion criteria for review. The observation period was between 1972 and 2015. Fifteen of the 22 studies used tests for cardiorespiratory endurance, eight for relative muscle strength, eleven for proxies of muscle power, and eight for speed. Measures of cardiorespiratory endurance exhibited a large initial increase and an equally large subsequent decrease, but the decrease appears to have reached a floor for all children between 2010 and 2015. Measures of relative muscle strength showed a general trend towards a small increase. Measures of proxies of muscle power indicated an overall small negative quadratic trend. For measures of speed, a small-to-medium increase was observed in recent years. Limitations Biological maturity was not considered in the analysis because biological maturity was not reported in most included studies. Conclusions Negative secular trends were particularly found for cardiorespiratory endurance between 1986 and 2010-12, irrespective of sex. Relative muscle strength and speed showed small increases while proxies of muscle power declined. Although the negative trend in cardiorespiratory endurance appears to have reached a floor in recent years, because of its association with markers of health, we recommend further initiatives in PA and fitness promotion for children and adolescents. More specifically, public health efforts should focus on exercise that increases cardiorespiratory endurance to prevent adverse health effects (i.e.
, overweight and obesity) and muscle strength to lay a foundation for motor skill learning.}, language = {en} } @article{MuehlbauerGranacherJockeletal.2013, author = {M{\"u}hlbauer, Thomas and Granacher, Urs and Jockel, Bj{\"o}rn and Kittel, R{\´e}ne}, title = {Analyse der Muskelaktivit{\"a}t therapeutischer Kletter{\"u}bungen}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {27}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0033-1335595}, pages = {162 -- 168}, year = {2013}, abstract = {Background: Therapeutic climbing exercises are employed for the treatment of shoulder-and knee-joint injuries. However, there is a void in the literature regarding muscle activation levels during the performance of these exercises. Thus, the purpose of this study was to investigate differences in muscle activation during therapeutic climbing exercises depending on the degree of task difficulty. Participants/Material and Methods: A sample of 10 healthy subjects (sex: 4 females, 6 males; age: 27 +/- 3 years; climbing experience: 5 +/- 3 years) performed three shoulder girdle (i.e., wide shoulder pull, narrow shoulder pull, shoulder row) and two leg extensor (i.e., ascending frontal, ascending sidewards) exercises. Electromyographic (EMG) data were recorded on the right side for eleven muscles and then normalised using the maximum voluntary contractions for each muscle. Results: With increasing task difficulty, muscle activity in all but one muscle (i.e., m. trapezius ascendens) increased significantly for the three shoulder girdle exercises. For the two leg extensor exercises, an increase in task difficulty produced a tendency towards yet not significantly higher muscle activity. Conclusion: Shoulder row was the most effective therapeutic climbing exercise in the ability to activate muscles while showing the highest EMG signals. The absence of significant differences in muscle activity between the two leg extensor exercises indicates their equivalent use for muscle activation during therapy.}, language = {de} } @article{NevillNegraMyersetal.2021, author = {Nevill, Alan M. and Negra, Yassine and Myers, Tony D. and Duncan, Michael J. and Chaabene, Helmi and Granacher, Urs}, title = {Are Early or Late Maturers Likely to Be Fitter in the General Population?}, series = {International Journal of Environmental Research and Public Health}, volume = {18}, journal = {International Journal of Environmental Research and Public Health}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph18020497}, pages = {16}, year = {2021}, abstract = {The present study aims to identify the optimal body-size/shape and maturity characteristics associated with superior fitness test performances having controlled for body-size, sex, and chronological-age differences. The sample consisted of 597 Tunisian children (396 boys and 201 girls) aged 8 to 15 years. Three sprint speeds recorded at 10, 20 and 30 m; two vertical and two horizontal jump tests; a change-of-direction and a handgrip-strength tests, were assessed during physical-education classes. Allometric modelling was used to identify the benefit of being an early or late maturer. Findings showed that being tall and light is the ideal shape to be successful at most physical fitness tests, but the height-to-weight "shape" ratio seems to be test-dependent. Having controlled for body-size/shape, sex, and chronological age, the model identified maturity-offset as an additional predictor. Boys who go earlier/younger through peak-height-velocity (PHV) outperform those who go at a later/older age. However, most of the girls' physical-fitness tests peaked at the age at PHV and decline thereafter. Girls whose age at PHV was near the middle of the age range would appear to have an advantage compared to early or late maturers. These findings have important implications for talent scouts and coaches wishing to recruit children into their sports/athletic clubs.}, language = {en} } @article{GranacherMuehlbauerGschwindetal.2014, author = {Granacher, Urs and M{\"u}hlbauer, Thomas and Gschwind, Y. J. and Pfenninger, B. and Kressig, R. W.}, title = {Assessment and training of strength and balance for fall prevention in the elderly. Recommendations of an interdisciplinary expert panel}, series = {Zeitschrift f{\"u}r Gerontologie und Geriatrie}, volume = {47}, journal = {Zeitschrift f{\"u}r Gerontologie und Geriatrie}, number = {6}, publisher = {Springer}, address = {Heidelberg}, issn = {0948-6704}, doi = {10.1007/s00391-013-0509-5}, pages = {513 -- 525}, year = {2014}, abstract = {The proportion of elderly people in societies of western industrialized countries is continuously rising. Biologic aging induces deficits in balance and muscle strength/power in old age, which is responsible for an increased prevalence of falls. Therefore, nationwide and easy-to-administer fall prevention programs have to be developed in order to contribute to the autonomy and quality of life in old age and to help reduce the financial burden on the public health care system due to the treatment of fall-related injuries. This narrative (qualitative) literature review deals with a) the reasons for an increased prevalence of falls in old age, b) important clinical tests for fall-risk assessment, and c) evidence-based intervention/training programs for fall prevention in old age. The findings of this literature review are based on a cost-free practice guide that is available to the public (via the internet) and that was created by an expert panel (i.e., geriatricians, exercise scientists, physiotherapists, geriatric therapists). The present review provides the scientific foundation of the practice guide.}, language = {de} } @article{SariatiZouhalHammamietal.2021, author = {Sariati, Dorsaf and Zouhal, Hassane and Hammami, Raouf and Clark, Cain Craig Truman and Nebigh, Ammar and Chtara, Moktar and Hackney, Anthony C. and Souissi, Nizar and Granacher, Urs and Ben Ounis, Omar}, title = {Association Between Mental Imagery and Change of Direction Performance in Young Elite Soccer Players of Different Maturity Status}, series = {Frontiers in Psychology}, volume = {12}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.665508}, pages = {1 -- 9}, year = {2021}, abstract = {Previous studies have not considered the potential influence of maturity status on the relationship between mental imagery and change of direction (CoD) speed in youth soccer. Accordingly, this cross-sectional study examined the association between mental imagery and CoD performance in young elite soccer players of different maturity status. Forty young male soccer players, aged 10-17 years, were assigned into two groups according to their predicted age at peak height velocity (PHV) (Pre-PHV; n = 20 and Post-PHV; n = 20). Participants were evaluated on soccer-specific tests of CoD with (CoDBall-15m) and without (CoD-15m) the ball. Participants completed the movement imagery questionnaire (MIQ) with the three- dimensional structure, internal visual imagery (IVI), external visual imagery (EVI), as well as kinesthetic imagery (KI). The Post-PHV players achieved significantly better results than Pre-PHV in EVI (ES = 1.58, large; p < 0.001), CoD-15m (ES = 2.09, very large; p < 0.001) and CoDBall-15m (ES = 1.60, large; p < 0.001). Correlations were significantly different between maturity groups, where, for the pre-PHV group, a negative very large correlation was observed between CoDBall-15m and KI (r = -0.73, p = 0.001). For the post-PHV group, large negative correlations were observed between CoD-15m and IVI (r = -0.55, p = 0.011), EVI (r = -062, p = 0.003), and KI (r = -0.52, p = 0.020). A large negative correlation of CoDBall-15m with EVI (r = -0.55, p = 0.012) and very large correlation with KI (r = -0.79, p = 0.001) were also observed. This study provides evidence of the theoretical and practical use for the CoD tasks stimulus with imagery. We recommend that sport psychology specialists, coaches, and athletes integrated imagery for CoD tasks in pre-pubertal soccer players to further improve CoD related performance.}, language = {en} } @article{AraziAsadiKhalkhalietal.2020, author = {Arazi, Hamid and Asadi, Abbas and Khalkhali, Farhood and Boullosa, Daniel and Hackney, Anthony C. and Granacher, Urs and Zouhal, Hassane}, title = {Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00995}, pages = {7}, year = {2020}, abstract = {This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r 2) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52\%) compared with ACWRRA (ranging between 17 and 39\%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season.}, language = {en} } @article{AraziAsadiKhalkhalietal.2020, author = {Arazi, Hamid and Asadi, Abbas and Khalkhali, Farhood and Boullosa, Daniel and Hackney, Anthony C. and Granacher, Urs and Zouhal, Hassane}, title = {Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players}, volume = {11}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00608}, pages = {7}, year = {2020}, abstract = {This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r²) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52\%) compared with ACWRRA (ranging between 17 and 39\%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season.}, language = {en} } @article{MuehlbauerGollhoferGranacher2013, author = {M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Association of balance, strength, and power measures in young adults}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {27}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1097/JSC.0b013e31825c2bab}, pages = {582 -- 589}, year = {2013}, abstract = {Muehlbauer, T, Gollhofer, A, and Granacher, U. Association of balance, strength, and power measures in young adults. J Strength Cond Res 27(3): 582-589, 2013-The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 6 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to + 0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to + 0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p, 0.05). Furthermore, simple regression analyses revealed that a 10\% increase in mean CMJ height (4.1 cm) was associated with 22.9 N.m and 128.4 N.m.s(-1) better MIT and RTD, respectively. The nonsignificant correlation between static and dynamic balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily.}, language = {en} } @article{BeurskensMuehlbauerGranacher2015, author = {Beurskens, Rainer and M{\"u}hlbauer, Thomas and Granacher, Urs}, title = {Association of dual-task walking performance and leg muscle quality in healthy children}, series = {BMC pediatrics}, volume = {15}, journal = {BMC pediatrics}, number = {2}, publisher = {BioMed Central}, address = {London}, issn = {1471-2431}, doi = {10.1186/s12887-015-0317-8}, year = {2015}, abstract = {Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children's dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7-9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability.}, language = {en} } @article{HammamiChaouachiMakhloufetal.2016, author = {Hammami, Raouf and Chaouachi, Anis and Makhlouf, Issam and Granacher, Urs and Behm, David George}, title = {Associations Between Balance and Muscle Strength, Power Performance in Male Youth Athletes of Different Maturity Status}, series = {Pediatric exercise science}, volume = {28}, journal = {Pediatric exercise science}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {0899-8493}, doi = {10.1123/pes.2015-0231}, pages = {521 -- 534}, year = {2016}, abstract = {Balance, strength and power relationships may contain important information at various maturational stages to determine training priorities. Purpose: The objective was to examine maturity-specific relationships of static/dynamic balance with strength and power measures in young male athletes. Method: Soccer players (N = 130) aged 10-16 were assessed with the Stork and Y balance (YBT) tests. Strength/power measures included back extensor muscle strength, standing long jump (SLJ), countermovement jump (CMJ), and 3-hop jump tests. Associations between balance with strength/power variables were calculated according to peak-height-velocity (PHV). Results: There were significant medium-large sized correlations between all balance measures with back extensor strength (r =.486.791) and large associations with power (r =.511.827). These correlation coefficients were significantly different between pre-PHV and circa PHV as well as pre-PHV and post-PHV with larger associations in the more mature groups. Irrespective of maturity-status, SLJ was the best strength/ power predictor with the highest proportion of variance (12-47\%) for balance (i.e., Stork eyes opened) and the YBT was the best balance predictor with the highest proportion of variance (43-78\%) for all strength/ power variables. Conclusion: The associations between balance and muscle strength/power measures in youth athletes that increase with maturity may imply transfer effects from balance to strength/power training and vice versa in youth athletes.}, language = {en} } @article{WickKriemlerGranacher2022, author = {Wick, Kristin and Kriemler, Susi and Granacher, Urs}, title = {Associations between measures of physical fitness and cognitive performance in preschool children}, series = {BMC sports science, medicine \& rehabilitation}, volume = {14}, journal = {BMC sports science, medicine \& rehabilitation}, number = {1}, publisher = {BMC}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-022-00470-w}, pages = {8}, year = {2022}, abstract = {Background: Given that recent studies report negative secular declines in physical fitness, associations between fitness and cognition in childhood are strongly discussed. The preschool age is characterized by high neuroplasticity which effects motor skill learning, physical fitness, and cognitive development. The aim of this study was to assess the relation of physical fitness and attention (including its individual dimensions (quantitative, qualitative)) as one domain of cognitive performance in preschool children. We hypothesized that fitness components which need precise coordination compared to simple fitness components are stronger related to attention. Methods: Physical fitness components like static balance (i.e., single-leg stance), muscle strength (i.e., handgrip strength), muscle power (i.e., standing long jump), and coordination (i.e., hopping on one leg) were assessed in 61 healthy children (mean age 4.5 +/- 0.6 years; girls n = 30). Attention was measured with the "Konzentrations-Handlungsverfahren fur Vorschulkinder" [concentration-action procedure for preschoolers]). Analyses were adjusted for age, body height, and body mass. Results: Results from single linear regression analysis revealed a significant (p < 0.05) association between physical fitness (composite score) and attention (composite score) (standardized ss = 0.40), showing a small to medium effect (F-2 = 0.14). Further, coordination had a significant relation with the composite score and the quantitative dimension of attention (standardized ss = 0.35; p < 0.01; standardized ss = - 0.33; p < 0.05). Coordination explained about 11\% (composite score) and 9\% (quantitative dimension) of the variance in the stepwise multiple regression model. Conclusion: The results indicate that performance in physical fitness, particularly coordination, is related to attention in preschool children. Thus, high performance in complex fitness components (i.e., hopping on one leg) tends to predict attention in preschool children. Further longitudinal studies should focus on the effectiveness of physical activity programs implementing coordination and complex exercises at preschool age to examine cause-effect relationships between physical fitness and attention precisely.}, language = {en} } @article{GranacherNobariRuivoAlvesetal.2020, author = {Granacher, Urs and Nobari, Hadi and Ruivo Alves, Ana and Clemente, Filipe Manuel and P{\´e}rez-G{\´o}mez, Jorge and Clark, Cain Craig Truman and Zouhal, Hassane}, title = {Associations Between Variations in Accumulated Workload and Physiological Variables in Young Male Soccer Players Over the Course of a Season}, series = {Frontiers in physiology}, volume = {12}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.638180}, pages = {1 -- 12}, year = {2020}, abstract = {This study sought to analyze the relationship between in-season training workload with changes in aerobic power (VO2max), maximum and resting heart rate (HRmax and HRrest), linear sprint medium (LSM), and short test (LSS), in soccer players younger than 16 years (under-16 soccer players). We additionally aimed to explain changes in fitness levels during the in-season through regression models, considering accumulated load, baseline levels, and peak height velocity (PHV) as predictors. Twenty-three male sub-elite soccer players aged 15.5 ± 0.2 years (PHV: 13.6 ± 0.4 years; body height: 172.7 ± 4.2 cm; body mass: 61.3 ± 5.6 kg; body fat: 13.7\% ± 3.9\%; VO2max: 48.4 ± 2.6 mL⋅kg-1⋅min-1), were tested three times across the season (i.e., early-season (EaS), mid-season (MiS), and end-season (EnS) for VO2max, HRmax, LSM, and LSS. Aerobic and speed variables gradually improved over the season and had a strong association with PHV. Moreover, the HRmax demonstrated improvements from EaS to EnS; however, this was more evident in the intermediate period (from EaS to MiS) and had a strong association with VO2max. Regression analysis showed significant predictions for VO2max [F(2, 20) = 8.18, p ≤ 0.001] with an R2 of 0.45. In conclusion, the meaningful variation of youth players' fitness levels can be observed across the season, and such changes can be partially explained by the load imposed.}, language = {en} } @article{HelmPrieskeMuehlbaueretal.2020, author = {Helm, Norman and Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Retzlaff, Matthias and Granacher, Urs}, title = {Associations between trunk muscle strength and judo-specific pulling performances in judo athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {34}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/a-0677-9608}, pages = {18 -- 27}, year = {2020}, abstract = {Background: Good trunk stability is an important prerequisite for the mobility of the upper and lower limbs during sport-specific movements. Therefore, trunk muscle strength may represent an important performance determinant for judo-specific movements. This study aimed at evaluating statistical correlations between trunk muscle strength and kinetic parameters during judo-specific pulling movements in judo players. Method: Twenty-one male sub-elite judo players aged 22 +/- 4 years with a mean training volume of 15 +/- 4 hours per week participated in this study. Peak isokinetic torque (PIT) of the trunk flexors (PITFlex), extensors (PITEx) and rotators (PITRot) was tested using an isokinetic dynamometer (IsoMed 2000). In addition, two kinetic parameters (mechanical work [W], maximal force [F-max]) were analysed using the judo-specific measurement and information system JERGo (c). For this purpose, athletes were asked to do their judo-specific pulling movements while standing and with a dynamic change of position (i.e. Morote-seoi-nage). Results: Regarding pulling movements while standing, significant correlations (0.62 <= r(P) <= 0.72) were found between isokinetic tests (PITFlex, PITEx, PITRot) and mechanical work during judo-specific movement. Further, significant correlations (0.59 <= r(P) <= 0.65) were detected between isokinetic tests (PITEx, PITRot) and judo-specific pulling movements (Fmax). Regarding pulling movements with a change of position, significant correlations (0.47 <= r(P) <= 0.88) were observed between isokinetics (PITFlex, PITEx, PITRot) and the kinetic pulling parameters (W, Fmax), irrespective of the examined arm. No significant differences in magnitude of correlation coefficients were found between PIT of the trunk flexors, extensors, and rotators and judo-specific movements. Further, the regression analysis indicated that PIT of the trunk extensors is the single best predictor for mechanical work during pulling movements while standing (46.9 \%). Trunk rotator PIT is the single best predictor for mechanical work during pulling movements with a change of position (69.4 \%). Conclusions: Findings from this study indicate that trunk muscle strength, particularly trunk rotator PIT is associated with kinetic pulling variables during pulling movements with a change of position. This implies that the development of trunk rotator strength could have an impact on pulling movements with a change of position (i.e. Morote-seoi-nage) in judo athletes.}, language = {de} } @article{GebelLehmannGranacher2020, author = {Gebel, Arnd and Lehmann, Tim and Granacher, Urs}, title = {Balance task difficulty affects postural sway and cortical activity in healthy adolescents}, series = {Experimental brain research}, volume = {238}, journal = {Experimental brain research}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-020-05810-1}, pages = {1323 -- 1333}, year = {2020}, abstract = {Electroencephalographic (EEG) research indicates changes in adults' low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16-17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4-7 Hz) and alpha-2 (10-12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands.}, language = {en} } @article{WiesmeierDalinWehrleetal.2017, author = {Wiesmeier, Isabella K. and Dalin, Daniela and Wehrle, Anja and Granacher, Urs and Muehlbauer, Thomas and Dietterle, J{\"o}rg and Weiller, Cornelius and Gollhofer, Albert and Maurer, Christoph}, title = {Balance training enhances vestibular function and reduces overactive proprioceptive feedback in elderly}, series = {Frontiers in aging neuroscience}, volume = {9}, journal = {Frontiers in aging neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1663-4365}, doi = {10.3389/fnagi.2017.00273}, pages = {13}, year = {2017}, abstract = {Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training programon these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits.}, language = {en} } @article{HortobagyiUematsuSandersetal.2018, author = {Hortobagyi, Tibor and Uematsu, Azusa and Sanders, Lianne and Kliegl, Reinhold and Tollar, Jozsef and Moraes, Renato and Granacher, Urs}, title = {Beam Walking to Assess Dynamic Balance in Health and Disease}, series = {Gerontology}, volume = {65}, journal = {Gerontology}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000493360}, pages = {332 -- 339}, year = {2018}, abstract = {Background: Dynamic balance keeps the vertical projection of the center of mass within the base of support while walking. Dynamic balance tests are used to predict the risks of falls and eventual falls. The psychometric properties of most dynamic balance tests are unsatisfactory and do not comprise an actual loss of balance while walking. Objectives: Using beam walking distance as a measure of dynamic balance, the BEAM consortium will determine the psychometric properties, lifespan and patient reference values, the relationship with selected "dynamic balance tests," and the accuracy of beam walking distance to predict falls. Methods: This cross-sectional observational study will examine healthy adults in 7 decades (n = 432) at 4 centers. Center 5 will examine patients (n = 100) diagnosed with Parkinson's disease, multiple sclerosis, stroke, and balance disorders. In test 1, all participants will be measured for demographics, medical history, muscle strength, gait, static balance, dynamic balance using beam walking under single (beam walking only) and dual task conditions (beam walking while concurrently performing an arithmetic task), and several cognitive functions. Patients and healthy participants age 50 years or older will be additionally measured for fear of falling, history of falls, miniBESTest, functional reach on a force platform, timed up and go, and reactive balance. All participants age 50 years or older will be recalled to report fear of falling and fall history 6 and 12 months after test 1. In test 2, seven to ten days after test 1, healthy young adults and age 50 years or older (n = 40) will be retested for reliability of beam walking performance. Conclusion: We expect to find that beam walking performance vis-{\`a}-vis the traditionally used balance outcomes predicts more accurately fall risks and falls. Clinical Trial Registration Number: NCT03532984.}, language = {en} } @article{BohleRimpelSchauenburgetal.2019, author = {Bohle, Hannah and Rimpel, J{\´e}r{\^o}me and Schauenburg, Gesche and Gebel, Arnd and Stelzel, Christine and Heinzel, Stephan and Rapp, Michael Armin and Granacher, Urs}, title = {Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults}, series = {Neural Plasticity}, journal = {Neural Plasticity}, publisher = {Hindawi}, address = {New York}, issn = {2090-5904}, doi = {10.1155/2019/9478656}, pages = {20}, year = {2019}, abstract = {The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Taskdependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity.}, language = {en} } @article{NegyesiHortobagyiHilletal.2022, author = {Negyesi, Janos and Hortobagyi, Tibor and Hill, Jessica and Granacher, Urs and Nagatomi, Ryoichi}, title = {Can compression garments reduce the deleterious effects of physical exercise on muscle strength?}, series = {Sports medicine}, volume = {52}, journal = {Sports medicine}, number = {9}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-022-01681-4}, pages = {2159 -- 2175}, year = {2022}, abstract = {Background The use of compression garments (CGs) during or after training and competition has gained popularity in the last few decades. However, the data concerning CGs' beneficial effects on muscle strength-related outcomes after physical exercise remain inconclusive. Objective The aim was to determine whether wearing CGs during or after physical exercise would facilitate the recovery of muscle strength-related outcomes. Methods A systematic literature search was conducted across five databases (PubMed, SPORTDiscus, Web of Science, Scopus, and EBSCOhost). Data from 19 randomized controlled trials (RCTs) including 350 healthy participants were extracted and meta-analytically computed. Weighted between-study standardized mean differences (SMDs) with respect to their standard errors (SEs) were aggregated and corrected for sample size to compute overall SMDs. The type of physical exercise, the body area and timing of CG application, and the time interval between the end of the exercise and subsequent testing were assessed. Results CGs produced no strength-sparing effects (SMD [95\% confidence interval]) at the following time points (t) after physical exercise: immediately <= t < 24 h: - 0.02 (- 0.22 to 0.19), p = 0.87; 24 <= t < 48 h: - 0.00 (- 0.22 to 0.21), p = 0.98; 48 <= t < 72 h: - 0.03 (- 0.43 to 0.37), p = 0.87; 72 <= t < 96 h: 0.14 (- 0.21 to 0.49), p = 0.43; 96 h <= t: 0.26 (- 0.33 to 0.85), p = 0.38. The body area where the CG was applied had no strength-sparing effects. CGs revealed weak strength-sparing effects after plyometric exercise. Conclusion Meta-analytical evidence suggests that wearing a CG during or after training does not seem to facilitate the recovery of muscle strength following physical exercise. Practitioners, athletes, coaches, and trainers should reconsider the use of CG as a tool to reduce the effects of physical exercise on muscle strength.}, language = {en} } @article{ElAshkerChaabeneNegraetal.2018, author = {El-Ashker, Said and Chaabene, Helmi and Negra, Yassine and Prieske, Olaf and Granacher, Urs}, title = {Cardio-Respiratory Endurance Responses Following a Simulated 3 x 3 Minutes Amateur Boxing Contest in Elite Level Boxers}, series = {Sports}, volume = {6}, journal = {Sports}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2075-4663}, doi = {10.3390/sports6040119}, pages = {8}, year = {2018}, abstract = {This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90\% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90\% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining.}, language = {en} } @article{ChaabenePrieskeNegraetal.2018, author = {Chaabene, Helmi and Prieske, Olaf and Negra, Yassine and Granacher, Urs}, title = {Change of direction speed}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {8}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0907-3}, pages = {1773 -- 1779}, year = {2018}, abstract = {There is growing evidence that eccentric strength training appears to have benefits over traditional strength training (i.e., strength training with combined concentric and eccentric muscle actions) from muscular, neuromuscular, tendinous, and metabolic perspectives. Eccentric muscle strength is particularly needed to decelerate and stabilize the body during the braking phase of a jump exercise or during rapid changes of direction (CoD) tasks. However, surprisingly little research has been conducted to elucidate the effects of eccentric strength training or strength training with accentuated eccentric muscle actions on CoD speed performance. In this current opinion article, we present findings from cross-sectional studies on the relationship between measures of eccentric muscle strength and CoD speed performance. In addition, we summarize the few available studies on the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletic populations. Finally, we propose strength training with accentuated eccentric muscle actions as a promising element in strength and conditioning programs of sports with high CoD speed demands. Our findings from five cross-sectional studies revealed statistically significant moderate-to large-sized correlations (r = 0.45-0.89) between measures of eccentric muscle strength and CoD speed performance in athletic populations. The identified three intervention studies were of limited methodological quality and reported small-to large-sized effects (d = 0.46-1.31) of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. With reference to the available but preliminary literature and from a performance-related point of view, we recommend strength and conditioning coaches to include strength training with accentuated eccentric muscle actions in training routines of sports with high CoD speed demands (e.g., soccer, handball, basketball, hockey) to enhance sport-specific performance. Future comparative studies are needed to deepen our knowledge of the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes.}, language = {en} } @article{MakhloufChaouachiChaouachietal.2018, author = {Makhlouf, Issam and Chaouachi, Anis and Chaouachi, Mehdi and Othman, Aymen Ben and Granacher, Urs}, title = {Combination of Agility and Plyometric Training Provides Similar Training Benefits as Combined Balance and Plyometric Training in Young Soccer Players}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01611}, pages = {1 -- 17}, year = {2018}, abstract = {Introduction: Studies that combined balance and resistance training induced larger performance improvements compared with single mode training. Agility exercises contain more dynamic and sport-specific movements compared with balance training. Thus, the purpose of this study was to contrast the effects of combined balance and plyometric training with combined agility and plyometric training and an active control on physical fitness in youth. Methods: Fifty-seven male soccer players aged 10-12 years participated in an 8-week training program (2 × week). They were randomly assigned to a balance-plyometric (BPT: n = 21), agility-plyometric (APT: n = 20) or control group (n = 16). Measures included proxies of muscle power [countermovement jump (CMJ), triple-hop-test (THT)], muscle strength [reactive strength index (RSI), maximum voluntary isometric contraction (MVIC) of handgrip, back extensors, knee extensors], agility [4-m × 9-m shuttle run, Illinois change of direction test (ICODT) with and without the ball], balance (Standing Stork, Y-Balance), and speed (10-30 m sprints). Results: Significant time × group interactions were found for CMJ, hand grip MVIC force, ICODT without a ball, agility (4 m × 9 m), standing stork balance, Y-balance, 10 and 30-m sprint. The APT pre- to post-test measures displayed large ES improvements for hand grip MVIC force, ICODT without a ball, agility test, CMJ, standing stork balance test, Y-balance test but only moderate ES improvements with the 10 and 30 m sprints. The BPT group showed small (30 m sprint), moderate (hand grip MVIC, ICODTwithout a ball) and large ES [agility (4 m × 9 m) test, CMJ, standing stork balance test, Y-balance] improvements, respectively. Conclusion: In conclusion, both training groups provided significant improvements in all measures. It is recommended that youth incorporate balance exercises into their training and progress to agility with their strength and power training.}, language = {en} } @article{PrieskeDempsLesinskietal.2017, author = {Prieske, Olaf and Demps, Marie and Lesinski, Melanie and Granacher, Urs}, title = {Combined Effects of Fatigue and Surface Instability on Jump Biomechanics in Elite Athletes}, series = {International journal of sports medicine}, volume = {38}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0043-111894}, pages = {781 -- 790}, year = {2017}, abstract = {The present study aimed to examine the effects of fatigue and surface instability on kinetic and kinematic jump performance measures. Ten female and 10 male elite volleyball players (18 +/- 2 years) performed repetitive vertical double-leg box jumps until failure. Pre and post fatigue, jump height/performance index, ground reaction force and knee flexion/valgus angles were assessed during drop and countermovement jumps on stable and unstable surfaces. Fatigue, surface condition, and sex resulted in significantly lower drop jump performance and ground reaction force (p0.031, 1.1d3.5). Additionally, drop jump knee flexion angles were significantly lower following fatigue (p=0.006, d=1.5). A significant fatiguexsurfacexsex interaction (p=0.020, d=1.2) revealed fatigue-related decrements in drop jump peak knee flexion angles under unstable conditions and in men only. Knee valgus angles were higher on unstable compared to stable surfaces during drop jumps and in females compared to males during drop and countermovement jumps (p0.054, 1.0d1.1). Significant surfacexsex interactions during countermovement jumps (p=0.002, d=1.9) indicated that knee valgus angles at onset of ground contact were significantly lower on unstable compared to stable surfaces in males but higher in females. Our findings revealed that fatigue and surface instability resulted in sex-specific knee motion strategies during jumping in elite volleyball players.}, language = {en} } @article{ZghalColsonBlainetal.2019, author = {Zghal, Firas and Colson, Serge S. and Blain, Gr{\´e}gory and Behm, David George and Granacher, Urs and Chaouachi, Anis}, title = {Combined Resistance and Plyometric Training Is More Effective Than Plyometric Training Alone for Improving Physical Fitness of Pubertal Soccer Players}, series = {frontiers in Physiology}, volume = {10}, journal = {frontiers in Physiology}, number = {August 2019}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01026}, pages = {11}, year = {2019}, abstract = {The purpose of this study was to compare the effects of combined resistance and plyometric/sprint training with plyometric/sprint training or typical soccer training alone on muscle strength and power, speed, change-of-direction ability in young soccer players. Thirty-one young (14.5 ± 0.52 years; tanner stage 3-4) soccer players were randomly assigned to either a combined- (COMB, n = 14), plyometric-training (PLYO, n = 9) or an active control group (CONT, n = 8). Two training sessions were added to the regular soccer training consisting of one session of light-load high-velocity resistance exercises combined with one session of plyometric/sprint training (COMB), two sessions of plyometric/sprint training (PLYO) or two soccer training sessions (CONT). Training volume was similar between the experimental groups. Before and after 7-weeks of training, peak torque, as well as absolute and relative (normalized to torque; RTDr) rate of torque development (RTD) during maximal voluntary isometric contraction of the knee extensors (KE) were monitored at time intervals from the onset of contraction to 200 ms. Jump height, sprinting speed at 5, 10, 20-m and change-of-direction ability performances were also assessed. There were no significant between-group baseline differences. Both COMB and PLYO significantly increased their jump height (Δ14.3\%; ES = 0.94; Δ12.1\%; ES = 0.54, respectively) and RTD at mid to late phases but with greater within effect sizes in COMB in comparison with PLYO. However, significant increases in peak torque (Δ16.9\%; p < 0.001; ES = 0.58), RTD (Δ44.3\%; ES = 0.71), RTDr (Δ27.3\%; ES = 0.62) and sprint performance at 5-m (Δ-4.7\%; p < 0.001; ES = 0.73) were found in COMB without any significant pre-to-post change in PLYO and CONT groups. Our results suggest that COMB is more effective than PLYO or CONT for enhancing strength, sprint and jump performances.}, language = {en} } @article{BouamraZouhalRateletal.2022, author = {Bouamra, Marwa and Zouhal, Hassane and Ratel, S{\´e}bastien and Makhlouf, Issam and Bezrati, Ikram and Chtara, Moktar and Behm, David George and Granacher, Urs and Chaouachi, Anis}, title = {Concurrent Training Promotes Greater Gains on Body Composition and Components of Physical Fitness Than Single-Mode Training (Endurance or Resistance) in Youth With Obesity}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2022.869063}, pages = {1 -- 16}, year = {2022}, abstract = {The prevalence of obesity in the pediatric population has become a major public health issue. Indeed, the dramatic increase of this epidemic causes multiple and harmful consequences, Physical activity, particularly physical exercise, remains to be the cornerstone of interventions against childhood obesity. Given the conflicting findings with reference to the relevant literature addressing the effects of exercise on adiposity and physical fitness outcomes in obese children and adolescents, the effect of duration-matched concurrent training (CT) [50\% resistance (RT) and 50\% high-intensity-interval-training (HIIT)] on body composition and physical fitness in obese youth remains to be elucidated. Thus, the purpose of this study was to examine the effects of 9-weeks of CT compared to RT or HIIT alone, on body composition and selected physical fitness components in healthy sedentary obese youth. Out of 73 participants, only 37; [14 males and 23 females; age 13.4 ± 0.9 years; body-mass-index (BMI): 31.2 ± 4.8 kg·m-2] were eligible and randomized into three groups: HIIT (n = 12): 3-4 sets×12 runs at 80-110\% peak velocity, with 10-s passive recovery between bouts; RT (n = 12): 6 exercises; 3-4 sets × 10 repetition maximum (RM) and CT (n = 13): 50\% serial completion of RT and HIIT. CT promoted significant greater gains compared to HIIT and RT on body composition (p < 0.01, d = large), 6-min-walking test distance (6 MWT-distance) and on 6 MWT-VO2max (p < 0.03, d = large). In addition, CT showed substantially greater improvements than HIIT in the medicine ball throw test (20.2 vs. 13.6\%, p < 0.04, d = large). On the other hand, RT exhibited significantly greater gains in relative hand grip strength (p < 0.03, d = large) and CMJ (p < 0.01, d = large) than HIIT and CT. CT promoted greater benefits for fat, body mass loss and cardiorespiratory fitness than HIIT or RT modalities. This study provides important information for practitioners and therapists on the application of effective exercise regimes with obese youth to induce significant and beneficial body composition changes. The applied CT program and the respective programming parameters in terms of exercise intensity and volume can be used by practitioners as an effective exercise treatment to fight the pandemic overweight and obesity in youth.}, language = {en} } @article{SandauChaabeneGranacher2021, author = {Sandau, Ingo and Chaabene, Helmi and Granacher, Urs}, title = {Concurrent validity of barbell force measured from video-based barbell kinematics during the snatch in male elite weightlifters}, series = {PLOS ONE / Public Library of Science}, volume = {16}, journal = {PLOS ONE / Public Library of Science}, number = {7}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0254705}, pages = {11}, year = {2021}, abstract = {This study examined the concurrent validity of an inverse dynamic (force computed from barbell acceleration [reference method]) and a work-energy (force computed from work at the barbell [alternative method]) approach to measure the mean vertical barbell force during the snatch using kinematic data from video analysis. For this purpose, the acceleration phase of the snatch was analyzed in thirty male medal winners of the 2018 weightlifting World Championships (age: 25.2±3.1 years; body mass: 88.9±28.6 kg). Vertical barbell kinematics were measured using a custom-made 2D real-time video analysis software. Agreement between the two computational approaches was assessed using Bland-Altman analysis, Deming regression, and Pearson product-moment correlation. Further, principal component analysis in conjunction with multiple linear regression was used to assess whether individual differences related to the two approaches are due to the waveforms of the acceleration time-series data. Results indicated no mean difference (p > 0.05; d = -0.04) and an extremely large correlation (r = 0.99) between the two approaches. Despite the high agreement, the total error of individual differences was 8.2\% (163.0 N). The individual differences can be explained by a multiple linear regression model (R2adj = 0.86) on principal component scores from the principal component analysis of vertical barbell acceleration time-series waveforms. Findings from this study indicate that the individual errors of force measures can be associated with the inverse dynamic approach. This approach uses vertical barbell acceleration data from video analysis that is prone to error. Therefore, it is recommended to use the work-energy approach to compute mean vertical barbell force as this approach did not rely on vertical barbell acceleration.}, language = {en} } @article{StelzelBohleSchauenburgetal.2018, author = {Stelzel, Christine and Bohle, Hannah and Schauenburg, Gesche and Walter, Henrik and Granacher, Urs and Rapp, Michael Armin and Heinzel, Stephan}, title = {Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking}, series = {Frontiers in psychologie}, volume = {9}, journal = {Frontiers in psychologie}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.01075}, pages = {12}, year = {2018}, abstract = {There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a oneback working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitivemotor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments.}, language = {en} } @article{BenOthmanChaouachiChaouachietal.2019, author = {Ben Othman, Aymen and Chaouachi, Anis and Chaouachi, Mehdi and Makhlouf, Issam and Farthing, Jonathan P. and Granacher, Urs and Behm, David George}, title = {Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children}, series = {Applied Physiology, Nutrition, and Metabolism}, volume = {44}, journal = {Applied Physiology, Nutrition, and Metabolism}, number = {9}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {1715-5312}, doi = {10.1139/apnm-2018-0766}, pages = {973 -- 984}, year = {2019}, abstract = {Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6\%-81.8\%; nondominant: 59.5\%-96.3\%), KE MVIC (dominant: 12.4\%-18.3\%; nondominant: 8.6\%-18.6\%), KF MVIC (dominant: 7.9\%-22.3\%; nondominant: nonsignificant-3.8\%), and power (CMJ: dominant: 11.1\%-18.1\%; nondominant: 7.7\%-16.6\%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2\%) and THT (9.6\%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg.}, language = {en} } @article{AhmadiHeratAlizadehetal.2021, author = {Ahmadi, Hamid and Herat, Nehara and Alizadeh, Shahab and Button, Duane C. and Granacher, Urs and Behm, David G.}, title = {Effect of an inverted seated position with upper arm blood flow restriction on measures of elbow flexors neuromuscular performance}, series = {PLOS ONE / Public Library of Science}, volume = {16}, journal = {PLOS ONE / Public Library of Science}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0245311}, pages = {19}, year = {2021}, abstract = {Purpose The objective of the investigation was to determine the concomitant effects of upper arm blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses. Methods Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest (control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile properties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise intervention were examined as well as pain scale. Results Inversion induced significant pre-exercise intervention decreases in elbow flexors MVC (21.1\%, Z2p = 0.48, p = 0.02) and resting evoked twitch forces (29.4\%, Z2p = 0.34, p = 0.03). The 30-s MVC induced significantly greater pre- to post-test decreases in potentiated twitch force (Z2p = 0.61, p = 0.0009) during inversion (75\%) than upright (65.3\%) conditions. Overall, BFR decreased MVC force 4.8\% (Z2p = 0.37, p = 0.05). For upright position, BFR induced 21.0\% reductions in M-wave amplitude (Z2p = 0.44, p = 0.04). There were no significant differences for electromyographic activity or voluntary activation as measured with the interpolated twitch technique. For all conditions, there was a significant increase in pain scale between the 40-60 s intervals and post-30-s MVC (upright< inversion, and without BFR< BFR). Conclusion The concomitant application of inversion with elbow flexors BFR only amplified neuromuscular performance impairments to a small degree. Individuals who execute forceful contractions when inverted or with BFR should be cognizant that force output may be impaired.}, language = {en} } @article{GolleGranacherHoffmannetal.2014, author = {Golle, Kathleen and Granacher, Urs and Hoffmann, Martin and Wick, Ditmar and M{\"u}hlbauer, Thomas}, title = {Effect of living area and sports club participation on physical fitness in children: a 4 year longitudinal study}, series = {BMC public health}, volume = {14}, journal = {BMC public health}, publisher = {BioMed Central}, address = {London}, issn = {1471-2458}, doi = {10.1186/1471-2458-14-499}, pages = {8}, year = {2014}, abstract = {Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas.}, language = {en} } @article{FuehnerGranacherGolleetal.2022, author = {F{\"u}hner, Thea Heidi and Granacher, Urs and Golle, Kathleen and Kliegl, Reinhold}, title = {Effect of timing of school enrollment on physical fitness in third graders}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-11710-x}, pages = {1 -- 11}, year = {2022}, abstract = {Timing of initial school enrollment may vary considerably for various reasons such as early or delayed enrollment, skipped or repeated school classes. Accordingly, the age range within school grades includes older-(OTK) and younger-than-keyage (YTK) children. Hardly any information is available on the impact of timing of school enrollment on physical fitness. There is evidence from a related research topic showing large differences in academic performance between OTK and YTK children versus keyage children. Thus, the aim of this study was to compare physical fitness of OTK (N = 26,540) and YTK (N = 2586) children versus keyage children (N = 108,295) in a representative sample of German third graders. Physical fitness tests comprised cardiorespiratory endurance, coordination, speed, lower, and upper limbs muscle power. Predictions of physical fitness performance for YTK and OTK children were estimated using data from keyage children by taking age, sex, school, and assessment year into account. Data were annually recorded between 2011 and 2019. The difference between observed and predicted z-scores yielded a delta z-score that was used as a dependent variable in the linear mixed models. Findings indicate that OTK children showed poorer performance compared to keyage children, especially in coordination, and that YTK children outperformed keyage children, especially in coordination. Teachers should be aware that OTK children show poorer physical fitness performance compared to keyage children.}, language = {en} } @article{SaidiZouhalRhibietal.2019, author = {Saidi, Karim and Zouhal, Hassane and Rhibi, Fatma and Tijani, Jed M. and Boullosa, Daniel and Chebbi, Amel and Hackney, Anthony C. and Granacher, Urs and Bideau, Benoit and Ben Abderrahman, Abderraouf}, title = {Effects of a six-week period of congested match play on plasma volume variations, hematological parameters, training workload and physical fitness in elite soccer players}, series = {PLOS ONE}, volume = {14}, journal = {PLOS ONE}, number = {7}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219692}, pages = {17}, year = {2019}, abstract = {Objectives The aims of this study were to investigate the effects of a six-week in-season period of soccer training and games (congested period) on plasma volume variations (PV), hematological parameters, and physical fitness in elite players. In addition, we analyzed relationships between training load, hematological parameters and players' physical fitness. Methods Eighteen elite players were evaluated before (T1) and after (T2) a six-week in-season period interspersed with 10 soccer matches. At T1 and T2, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). In addition, PV and hematological parameters (erythrocytes [M/mm3], hematocrit [\%], hemoglobin [g/dl], mean corpuscular volume [fl], mean corpuscular hemoglobin content [pg], and mean hemoglobin concentration [\%]) were assessed. Daily ratings of perceived exertion (RPE) were monitored in order to quantify the internal training load. Results From T1 to T2, significant performance declines were found for the YYIR1 (p<0.001, effect size [ES] = 0.5), RSSA (p<0.01, ES = 0.6) and SJ tests (p< 0.046, ES = 0.7). However, no significant changes were found for the CMJ (p = 0.86, ES = 0.1). Post-exercise, RSSA blood lactate (p<0.012, ES = 0.2) and PV (p<0.01, ES = 0.7) increased significantly from T1 to T2. A significant decrease was found from T1 to T2 for the erythrocyte value (p<0.002, ES = 0.5) and the hemoglobin concentration (p<0.018, ES = 0.8). The hematocrit percentage rate was also significantly lower (p<0.001, ES = 0.6) at T2. The mean corpuscular volume, mean corpuscular hemoglobin content and the mean hemoglobin content values were not statistically different from T1 to T2. No significant relationships were detected between training load parameters and percentage changes of hematological parameters. However, a significant relationship was observed between training load and changes in RSSA performance (r = -0.60; p<0.003). Conclusions An intensive period of "congested match play" over 6 weeks significantly compromised players' physical fitness. These changes were not related to hematological parameters, even though significant alterations were detected for selected measures.}, language = {en} } @article{WickKriemlerGranacher2021, author = {Wick, Kristin and Kriemler, Susi and Granacher, Urs}, title = {Effects of a strength-dominated exercise program on physical fitness and cognitive performance in preschool children}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {35}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {4}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000003942}, pages = {983 -- 990}, year = {2021}, abstract = {Wick, K, Kriemler, S, and Granacher, U. Effects of a strength-dominated exercise program on physical fitness and cognitive performance in preschool children. J Strength Cond Res 35(4): 983-990, 2021-Childhood is characterized by high neuroplasticity that affords qualitative rather than quantitative components of physical activity to maximize the potential to sufficiently develop motor skills and foster long-term engagement in regular physical activity. This study examined the effects of an integrative strength-dominated exercise program on measures of physical fitness and cognitive performance in preschool children. Children aged 4-6 years from 3 kindergartens were randomized into an intervention (INT) group (n = 32) or a control group (n = 22). The 10-week intervention period was conducted 3 times per week (each session lasted 30 minutes) and included exercises for the promotion of muscle strength and power, coordination, and balance. Pre and post training, tests were conducted for the assessment of muscle strength (i.e., handgrip strength), muscle power (i.e., standing long jump), balance (i.e., timed single-leg stand), coordination (hopping on right/left leg), and attentional span (i.e., "Konzentrations-Handlungsverfahren fur Vorschulkinder" [concentration-action procedure for preschoolers]). Results from 2 x 2 repeated-measures analysis of covariance revealed a significant (p <= 0.05) and near significant (p = 0.051) group x time interaction for the standing long jump test and the Konzentrations-Handlungsverfahren. Post hoc tests showed significant pre-post changes for the INT (p < 0.001; d = 1.53) but not the CON (p = 0.72; d = 0.83). Our results indicate that a 10-week strength-dominated exercise program increased jump performance with a concomitant trend toward improvements in attentional capacity of preschool children. Thus, we recommend implementing this type of exercise program for preschoolers.}, language = {en} } @article{LacroixKressigMuehlbaueretal.2016, author = {Lacroix, Andre and Kressig, Reto W. and M{\"u}hlbauer, Thomas and Gschwind, Yves J. and Pfenninger, Barbara and Bruegger, Othmar and Granacher, Urs}, title = {Effects of a Supervised versus an Uniupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial}, series = {Gerontology}, volume = {62}, journal = {Gerontology}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000442087}, pages = {275 -- 288}, year = {2016}, abstract = {Background: Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. Objective:This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Methods: Sixty-six older adults (men: 25, women: 41; age 73 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Results: Adherence rates to training were 92\% for SUP and 97\% for UNSUP. BST resulted in significant group x time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Conclusion: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90\%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. (C) 2015 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{JafarnezhadgeroGhorbanlooFatollahietal.2021, author = {Jafarnezhadgero, AmirAli and Ghorbanloo, Farshad and Fatollahi, Amir and Dionisio, Valdeci Carlos and Granacher, Urs}, title = {Effects of an elastic resistance band exercise program on kinetics and muscle activities during walking in young adults with genu valgus}, series = {Clinical biomechanics : a journal affiliated to the International Society of Biomechanics and the American Society of Biomechanics}, volume = {81}, journal = {Clinical biomechanics : a journal affiliated to the International Society of Biomechanics and the American Society of Biomechanics}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0268-0033}, doi = {10.1016/j.clinbiomech.2020.105215}, pages = {10}, year = {2021}, abstract = {Background: This double-blinded randomized-controlled-trial aimed to identify the effects of an elastic band resistance training on walking kinetics and muscle activities in young adults with genu valgus. Methods: Forty-two male young adults aged 22.5(2.7) years with genu valgus were randomly allocated to two experimental groups. The intervention group (n = 21) conducted a 14-weeks elastic band resistance training. The control group was passive during the intervention period and received the same treatment after the post-tests. Pre and post training, ground reaction forces and lower limb muscle activities were recorded during walking. Findings: Results revealed significant group-by-time interactions for peak medial ground reaction force and timeto-peak for posterior ground reaction force in favor of the intervention group (p < 0.012; d = 0.83-3.76). Resistance training with elastic bands resulted in significantly larger peak medial ground reaction force (p < 0.001; d = 1.45) and longer time-to-peak for posterior ground reaction force (p < 0.001; d = 1.85). Finding showed significant group-by-time interactions for peak positive free moment amplitudes in favor of the intervention group (p < 0.001; d = 1.18-2.02). Resistance training resulted in a lower peak positive free moment amplitude (p = 0.001; d = 1.46). With regards to muscle activities, the analysis revealed significant group-by time interactions for rectus femoris and gluteus medius activities during the push-off phase in favor of the intervention group (p < 0.038; d = 0.68-0.89). Resistance training induced higher rectus femoris (p = 0.038; d = 0.84) and gluteus medius (p = 0.007; d = 0.54) activities. Interpretation: This study proved the effectiveness of resistance training using elastic bands on kinetics and muscle activities during walking in male adults with genu valgus disorder. Given that this training regime is low cost, effective, and easy-to-administer, we suggest that it should be implemented as a rehabilitative or preventive means for young adults with genu valgus.}, language = {en} } @article{GranacherGruberFoerdereretal.2010, author = {Granacher, Urs and Gruber, Markus and Foerderer, Dominik and Strass, Dieter and Gollhofer, Albert}, title = {Effects of ankle fatigue on functional reflex activity during gait perturbations in young and elderly men}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2010.03.016}, year = {2010}, abstract = {There is growing evidence that aging and muscle fatigue result in impaired postural reflexes in humans. Therefore, the objective of this study was to examine the effects of ankle fatigue on functional reflex activity (ERA) during gait perturbations in young and elderly men. Twenty-eight young (27.0 +/- 3.1 years, n = 14) and old (67.2 +/- 3.7 years, n = 14) healthy active men participated in this study. Fatigue of the plantarflexors and dorsiflexors was induced by isokinetic contractions. Pre and post-fatigue, subjects were tested for their ability to compensate for decelerating gait perturbations while walking on a treadmill. Latency, ERA of lower extremity muscles and angular velocity of the ankle joint complex were analysed by means of surface electromyography and goniometry. After the fatigue protocol, no significant main and interaction effects were detected for the parameter latency in m. tibialis anterior (TA). For both groups, a significant pre to post-test decrease in ERA in TA (P<.001) was observed coming along with increases in antagonist coactivity (P=.013) and maximal angular velocity of the ankle joint (p=.007). However, no significant group x test interactions were found for the three parameters. Ankle fatigue has an impact on the ability to compensate for gait perturbations in young and elderly adults. However, no significant differences in all analysed parameters were detected between young and elderly subjects. These results may imply that age-related deteriorations in the postural control system do not specifically affect the ability to compensate for gait perturbations under fatigued condition.}, language = {en} } @article{JafarnezhadgeroAlaviMehrGranacher2019, author = {Jafarnezhadgero, Amir Ali and Alavi-Mehr, Seyed Majid and Granacher, Urs}, title = {Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {5}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216818}, pages = {14}, year = {2019}, abstract = {Physical fatigue and pronated feet constitute two risk factors for running-related lower limb injuries. Accordingly, different running shoe companies designed anti-pronation shoes with medial support to limit over pronation in runners. However, there is little evidence on the effectiveness and clinical relevance of anti-pronation shoes. This study examined lower limb kinematics and kinetics in young female runners with pronated feet during running with antipronation versus regular (neutral) running shoes in unfatigued and fatigued condition. Twenty-six female runners aged 24.1±5.6 years with pronated feet volunteered to participate in this study. Kinetic (3D Kistler force plate) and kinematic analyses (Vicon motion analysis system) were conducted to record participants' ground reaction forces and joint kinematics when running with anti-pronation compared with neutral running shoes. Physical fatigue was induced through an individualized submaximal running protocol on a motorized treadmill using rate of perceived exertion and heart rate monitoring. The statistical analyses indicated significant main effects of "footwear" for peak ankle inversion, peak ankle eversion, and peak hip internal rotation angles (p<0.03; d = 0.46-0.95). Pair-wise comparisons revealed a significantly greater peak ankle inversion angle (p<0.03; d = 0.95; 2.70°) and smaller peak eversion angle (p<0.03; d = 0.46; 2.53°) when running with anti-pronation shoes compared with neutral shoes. For kinetic data, significant main effects of "footwear" were found for peak ankle dorsiflexor moment, peak knee extensor moment, peak hip flexor moment, peak hip extensor moment, peak hip abductor moment, and peak hip internal rotator moment (p<0.02; d = 1.00-1.79). For peak positive hip power in sagittal and frontal planes and peak negative hip power in horizontal plane, we observed significant main effects of "footwear" (p<0.03; d = 0.92-1.06). Pairwise comparisons revealed that peak positive hip power in sagittal plane (p<0.03; d = 0.98; 2.39 w/kg), peak positive hip power in frontal plane (p = 0.014; d = 1.06; 0.54 w/kg), and peak negative hip power in horizontal plane (p<0.03; d = 0.92; 0.43 w/kg) were greater with anti-pronation shoes. Furthermore, the statistical analyses indicated significant main effects of "Fatigue" for peak ankle inversion, peak ankle eversion, and peak knee external rotation angles. Pair-wise comparisons revealed a fatigue-induced decrease in peak ankle inversion angle (p<0.01; d = 1.23; 2.69°) and a fatigue-induced increase in peak knee external rotation angle (p<0.05; d = 0.83; 5.40°). In addition, a fatigue-related increase was found for peak ankle eversion (p<0.01; d = 1.24; 2.67°). For kinetic data, we observed a significant main effect of "Fatigue" for knee flexor moment, knee internal rotator moment, and hip extensor moment (p<0.05; d = 0.83-1.01). The statistical analyses indicated significant a main effect of "Fatigue" for peak negative ankle power in sagittal plane (p<0.01; d = 1.25). Finally, we could not detect any significant footwear by fatigue interaction effects for all measures of joint kinetics and kinematics. Running in anti-pronation compared with neutral running shoes produced lower peak moments and powers in lower limb joints and better control in rear foot eversion. Physical fatigue increased peak moments and powers in lower limb joints irrespective of the type of footwear.}, language = {en} } @article{BeurskensMuehlbauerGrabowetal.2016, author = {Beurskens, Rainer and M{\"u}hlbauer, Thomas and Grabow, Lena and Kliegl, Reinhold and Granacher, Urs}, title = {Effects of Backpack Carriage on Dual-Task Performance in Children During Standing and Walking}, series = {Journal of motor behavior}, volume = {48}, journal = {Journal of motor behavior}, publisher = {Wiley-VCH}, address = {Abingdon}, issn = {0022-2895}, doi = {10.1080/00222895.2016.1152137}, pages = {500 -- 508}, year = {2016}, language = {en} } @article{MuehlbauerStuerchlerGranacher2012, author = {M{\"u}hlbauer, Thomas and St{\"u}rchler, M. and Granacher, Urs}, title = {Effects of climbing on core strength and mobility in adults}, series = {International journal of sports medicine}, volume = {33}, journal = {International journal of sports medicine}, number = {6}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0031-1301312}, pages = {445 -- 451}, year = {2012}, abstract = {The objective of this study was to examine the impact of an indoor climbing training and detraining program on core/handgrip strength and trunk mobility in men and women. 28 young sedentary adults participated in this study and were assigned to an intervention (30+/-3 years) or a control (29+/-2 years) group. The intervention group participated in 8 weeks (2 times/week) of indoor climbing training, followed by 8 weeks of detraining. Tests included the measurement of maximal isometric strength (MIS) of the trunk flexors/extensors, the assessment of trunk mobility in the sagittal (SAP) and the coronal (CRP) plane as well as testing of handgrip strength. After training, significant improvements were observed in MIS of the trunk flexors/extensors (similar to 19-22 \%, all p<0.01), in trunk mobility in SAP/CRP (similar to 14-19 \%, all p<0.01), and in handgrip strength (similar to 5 \%, p<0.01). During detraining, MIS (similar to 12-13 \%, all p<0.01) and trunk mobility (similar to 7-10\%, all p<0.01) deteriorated significantly, whereas handgrip strength remained. This indoor climbing training program conducted in sedentary adults proved to be feasible (i.e., attendance rate of 89.4\%) and effective. It is suggested that indoor climbing should be permanently conducted to maintain the observed improvements in core muscle strength and trunk mobility.}, language = {en} } @article{ZouitaZouhalFerchichietal.2020, author = {Zouita, Sghaier and Zouhal, Hassane and Ferchichi, Habiba and Paillard, Thierry and Dziri, Catherine and Hackney, Anthony C. and Laher, Ismail and Granacher, Urs and Ben Moussa Zouita, Amira}, title = {Effects of Combined Balance and Strength Training on Measures of Balance and Muscle Strength in Older Women With a History of Falls}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.619016}, pages = {13}, year = {2020}, abstract = {Objective: We investigated the effects of combined balance and strength training on measures of balance and muscle strength in older women with a history of falls. Methods: Twenty-seven older women aged 70.4 ± 4.1 years (age range: 65 to 75 years) were randomly allocated to either an intervention (IG, n = 12) or an active control (CG, n = 15) group. The IG completed 8 weeks combined balance and strength training program with three sessions per week including visual biofeedback using force plates. The CG received physical therapy and gait training at a rehabilitation center. Training volumes were similar between the groups. Pre and post training, tests were applied for the assessment of muscle strength (weight-bearing squat [WBS] by measuring the percentage of body mass borne by each leg at different knee flexions [0°, 30°, 60°, and 90°], sit-to-stand test [STS]), and balance. Balance tests used the modified clinical test of sensory interaction (mCTSIB) with eyes closed (EC) and opened (EO), on stable (firm) and unstable (foam) surfaces as well as spatial parameters of gait such as step width and length (cm) and walking speed (cm/s). Results: Significant group × time interactions were found for different degrees of knee flexion during WBS (0.0001 < p < 0.013, 0.441 < d < 0.762). Post hoc tests revealed significant pre-to-post improvements for both legs and for all degrees of flexion (0.0001 < p < 0.002, 0.697 < d < 1.875) for IG compared to CG. Significant group × time interactions were found for firm EO, foam EO, firm EC, and foam EC (0.006 < p < 0.029; 0.302 < d < 0.518). Post hoc tests showed significant pre-to-post improvements for both legs and for all degrees of oscillations (0.0001 < p < 0.004, 0.753 < d < 2.097) for IG compared to CG. This study indicates that combined balance and strength training improved percentage distribution of body weight between legs at different conditions of knee flexion (0°, 30°, 60°, and 90°) and also decreased the sway oscillation on a firm surface with eyes closed, and on foam surface (with eyes opened or closed) in the IG. Conclusion: The higher positive effects of training seen in standing balance tests, compared with dynamic tests, suggests that balance training exercises including lateral, forward, and backward exercises improved static balance to a greater extent in older women.}, language = {en} } @article{WallentaGranacherLesinskietal.2016, author = {Wallenta, Christopher and Granacher, Urs and Lesinski, Melanie and Schuenemann, C. and M{\"u}hlbauer, Thomas}, title = {Effects of Complex Versus Block Strength Training on the Athletic Performance of Elite Youth Soccer Players}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\~A}\ivention, Rehabilitation}, volume = {30}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\~A}\ivention, Rehabilitation}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0041-106949}, pages = {31 -- 37}, year = {2016}, abstract = {Hintergrund: Kraft und Schnelligkeit stellen bedeutsame leistungsdeterminierende Faktoren im Fußball dar. Durch Komplextraining (Kombination aus Kraft- und plyometrischen {\"U}bungen in einer Trainingseinheit) lassen sich Kraft- und Schnelligkeitswerte von Athleten steigern. Unklar ist jedoch, ob ein Komplextraining (KT) gegen{\"u}ber einem herk{\"o}mmlichen blockweisen Krafttraining (BT) zu gr{\"o}ßeren sportmotorischen Leistungssteigerungen f{\"u}hrt. Das Ziel der Studie war es, die Effekte von KT versus BT auf Variablen der Kraft, Schnelligkeit und Gewandtheit von Nachwuchsleistungsfußballern zu untersuchen. Methode: Zus{\"a}tzlich zum regul{\"a}ren Fußballtraining (ca. 6 × pro Woche, je 60 - 90 min.) f{\"u}hrten 18 m{\"a}nnliche Nachwuchsleistungsfußballer {\"u}ber sechs Wochen (2 × pro Woche, je 30 min.) entweder ein progressives KT (n = 10, Alter: 18,5 ± 2,2 Jahre) oder BT (n = 8, Alter: 18,1 ± 1,6 Jahre) durch. Vor und nach dem Training wurden Tests zur Erfassung der Kraft (Einer-Wiederholungs-Maximum [EWM] Kniebeuge), der Sprungkraft (Hockstrecksprung [HSS]), der Schnelligkeit (30-m-Sprint) und der Gewandtheit (T-Test) durchgef{\"u}hrt. Es wurden parameterfreie Verfahren zur Bestimmung von Unterschieden innerhalb (Wilcoxon-Test) und zwischen (Mann-Whitney-U-Test) den beiden Gruppen gerechnet. Ergebnisse: Sowohl KT als auch BT sind sichere (keine trainings- aber sechs spielbedingte Verletzungen) und geeignete (Trainingsteilnahme in KT und BT: \&\#8805; 80 \%) Trainingsmaßnahmen in Erg{\"a}nzung zum regul{\"a}ren Fußballtraining. Die statistische Analyse ergab signifikante Verbesserungen vom Pr{\"a}- zum Posttest f{\"u}r die KT-Gruppe im EWM (p = 0,043) und im HSS (p = 0,046) sowie f{\"u}r die BT-Gruppe in der Sprintzeit {\"u}ber 5 m (p = 0,039) und 10 m (p = 0,026). Zudem zeigten sich f{\"u}r beide Gruppen signifikante Verbesserungen im T-Test (KT: p = 0,046; BT: p = 0,027). Der Gruppenvergleich (KT vs. BT) {\"u}ber die Zeit (Post- minus Pr{\"a}test) offenbarte keine bedeutsamen Unterschiede. Schlussfolgerung: Sowohl sechsw{\"o}chiges KT als auch BT f{\"u}hrten zu signifikanten Verbesserungen sportmotorischer Leistungen bei Nachwuchsleistungsfußballern. Allerdings konnten keine zus{\"a}tzlich leistungssteigernden Effekte von KT im Vergleich zu BT ermittelt werden. In zuk{\"u}nftigen Studien sollte gepr{\"u}ft werden, ob die beobachteten testspezifischen Ver{\"a}nderungen, d. h. Verbesserung der Kraft/Sprungkraft in der KT-Gruppe und Verbesserung der Schnelligkeit in der BT-Gruppe der gew{\"a}hlten {\"U}bungsanordnung geschuldet sind oder einen generellen Effekt darstellen. Background: Muscle strength and speed are important determinants of soccer performance. It has previously been shown that complex training (CT, combination of strength and plyometric exercises within a single training session) is effective to enhance strength and speed performance in athletes. However, it is unresolved whether CT is more effective than conventional strength training that is delivered in one single block (BT) to increase proxies of athletic performance. Thus, the aim of the present study was to investigate the effects of CT versus BT on measures of muscle strength/power, speed, and agility in elite youth soccer players. Methods: Eighteen male elite youth soccer players conducted six weeks (2 sessions/week, 30 min, each) of progressive CT (n = 10, age: 18,5 +/- 2.2 years) or BT (n=8, age: 18.1 +/- 1.6 years) in addition to their regular soccer training (approx. 6 sessions/week, 60-90 min, each). Before and after training, tests were conducted for the assessment of strength (one -repetition maximum [1RM] squat), power (countermovement jump [CMJ]), speed (30-m linear sprint), and agility (T test). Non-parametric analyses were used to calculate differences within (Wilcoxon test) and between (Mann-Whitney-U test) groups. Results: Both CT and BT proved to be safe (i.e. no training-related, but six match -related injuries reported) and feasible (i.e. attendance rate of 80\% in both groups) training regimens when implemented in addition to regular soccer training. The statistical analysis revealed significant improvements from pre-training to post-training tests for the CT group in 1 RM squat (p =0.043) and CMJ height (p =0,046). For the BT -group, significantly enhanced sprint times were observed over 5 m (p = 0.039) and 10 m (p = 0.026), Furthermore, both groups significantly improved their t test time (CT: p =0.046; BT: p =0.027). However, group comparisons (CT vs. BT) over time (post-training minus pre-training test) did not show any significant differences. Conclusion: Six weeks of CT and BT resulted in significant improvements in proxies of athletic performance. Yet CT did not produce any additional effects compared to BT. Future research is needed to examine whether the observed test-specific changes, i.e. improvements in strength/power for the CT-group and improvements in speed for the BT-group, are due to the applied configuration of strength, plyometric, and sprint exercises or if they rather indicate a general training response.}, language = {de} } @article{KuemmelBergmannPrieskeetal.2016, author = {Kuemmel, Jakob and Bergmann, Julian and Prieske, Olaf and Kramer, Andreas and Granacher, Urs and Gruber, Markus}, title = {Effects of conditioning hops on drop jump and sprint performance: a randomized crossover pilot study in elite athletes}, series = {BMC sports science, medicine \& rehabilitation}, volume = {8}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-016-0027-z}, pages = {8}, year = {2016}, abstract = {Background: It has previously been shown that conditioning activities consisting of repetitive hops have the potential to induce better drop jump (DJ) performance in recreationally active individuals. In the present pilot study, we investigated whether repetitive conditioning hops can also increase reactive jump and sprint performance in sprint-trained elite athletes competing at an international level. Methods: Jump and sprint performances of 5 athletes were randomly assessed under 2 conditions. The control condition (CON) comprised 8 DJs and 4 trials of 30-m sprints. The intervention condition (HOP) consisted of 10 maximal repetitive two-legged hops that were conducted 10 s prior to each single DJ and sprint trial. DJ performance was analyzed using a one-dimensional ground reaction force plate. Step length (SL), contact time (CT), and sprint time (ST) during the 30-m sprints were recorded using an opto-electronic measurement system. Results: Following the conditioning activity, DJ height and external DJ peak power were both significantly increased by 11 \% compared to the control condition. All other variables did not show any significant differences between HOP and CON. Conclusions: In the present pilot study, we were able to demonstrate large improvements in DJ performance even in sprint-trained elite athletes following a conditioning activity consisting of maximal two-legged repetitive hops. This strengthens the hypothesis that plyometric conditioning exercises can induce performance enhancements in elite athletes that are even greater than those observed in recreationally active athletes.. In addition, it appears that the transfer of these effects to other stretch-shortening cycle activities is limited, as we did not observe any changes in sprint performance following the plyometric conditioning activity.}, language = {en} } @article{GranacherLacroixMuehlbaueretal.2013, author = {Granacher, Urs and Lacroix, Andre and M{\"u}hlbauer, Thomas and R{\"o}ttger, Katrin and Gollhofer, Albert}, title = {Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults}, series = {Gerontology}, volume = {59}, journal = {Gerontology}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000343152}, pages = {105 -- 113}, year = {2013}, abstract = {Background: Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. Objective: The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Methods: Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 +/- 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 +/- 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Results: Program compliance was excellent with participants of the INT group completing 92\% of the training sessions. Significant group x test interactions were found for the maximal isometric strength of the trunk flexors (34\%, p < 0.001), extensors (21\%, p < 0.001), lateral flexors (right: 48\%, p < 0.001; left: 53\%, p < 0.001) and left rotators (42\%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11\%, p < 0.001) and coronal plane (11\%, p = 0.06) directions, for stride velocity (9\%, p < 0.05), the coefficient of variation in stride velocity (31\%, p < 0.05), the Functional Reach test (20\%, p < 0.05) and the Timed Up and Go test (4\%, p < 0.05) in favor of the INT group. Conclusion: CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training.}, language = {en} } @article{GranacherSchellbachKleinetal.2014, author = {Granacher, Urs and Schellbach, J{\"o}rg and Klein, Katja and Prieske, Olaf and Baeyens, Jean-Pierre and M{\"u}hlbauer, Thomas}, title = {Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents}, series = {BMC sports science, medicine \& rehabilitation}, volume = {6}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {2052-1847}, doi = {10.1186/2052-1847-6-40}, pages = {11}, year = {2014}, abstract = {Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22\%, f = 0.47-0.76), the jumping sideways test (4-5\%, f = 1.07), and the Y balance test (2-3\%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3\%, f = 0.39) and the stand-and-reach test (0-2\%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2\%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS.}, language = {en} } @article{LesinskiPrieskeBordeetal.2018, author = {Lesinski, Melanie and Prieske, Olaf and Borde, Ron and Beurskens, Rainer and Granacher, Urs}, title = {Effects of Different Footwear Properties and Surface Instability on Neuromuscular Activity and Kinematics During Jumping}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {32}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002556}, pages = {3246 -- 3257}, year = {2018}, abstract = {The purpose of this study was to examine sex-specific effects of different footwear properties vs. barefoot condition during the performance of drop jumps (DJs) on stable and unstable surfaces on measures of jump performance, electromyographic (EMG) activity, and knee joint kinematics. Drop jump performance, EMG activity of lower-extremity muscles, as well as sagittal and frontal knee joint kinematics were tested in 28 healthy male (n = 14) and female (n = 14) physically active sports science students (23 6 2 years) during the performance of DJs on stable and unstable surfaces using different footwear properties (elastic vs. minimal shoes) vs. barefoot condition. Analysis revealed a significantly lower jump height and performance index (Delta 7-12\%; p < 0.001; 2.22 <= d = 2.90) during DJs on unstable compared with stable surfaces. This was accompanied by lower thigh/shank muscle activities (Delta 11-28\%; p < 0.05; 0.99 <= d = 2.16) and knee flexion angles (Delta 5-8\%; p < 0.05; 1.02 <= d = 2.09). Furthermore, knee valgus angles during DJs were significantly lower when wearing shoes compared with barefoot condition (Delta 22-32\%; p < 0.01; 1.38 <= d = 3.31). Sex-specific analyses indicated higher knee flexion angles in females compared with males during DJs, irrespective of the examined surface and footwear conditions (Delta 29\%; p < 0.05; d = 0.92). Finally, hardly any significant footwear-surface interactions were detected. Our findings revealed that surface instability had an impact on DJ performance, thigh/shank muscle activity, and knee joint kinematics. In addition, the single factors "footwear" and "sex" modulated knee joint kinematics during DJs. However, hardly any significant interaction effects were found. Thus, additional footwear-related effects can be neglected when performing DJs during training on different surfaces.}, language = {en} } @article{RamirezCampilloGarciaPinillosGarciaRamosetal.2018, author = {Ramirez-Campillo, Rodrigo and Garc{\´i}a-Pinillos, Felipe and Garc{\´i}a-Ramos, Amador and Yanci, Javier and Gentil, Paulo and Chaabene, Helmi and Granacher, Urs}, title = {Effects of Different Plyometric Training Frequencies on Components of Physical Fitness in Amateur Female Soccer Players}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00934}, pages = {1 -- 11}, year = {2018}, abstract = {Plyometric jump training (PJT) is a frequently used and effective means to improve amateur and elite soccer players' physical fitness. However, it is unresolved how different PJT frequencies per week with equal overall training volume may affect training-induced adaptations. Therefore, the aim of this study was to compare the effects of an in-season 8 week PJT with one session vs. two sessions per week and equal training volume on components of physical fitness in amateur female soccer players. A single-blind randomized controlled trial was conducted. Participants (N = 23; age, 21.4 ± 3.2 years) were randomly assigned to a one session PJT per-week (PJT-1, n = 8), two sessions PJT per-week (PJT-2, n = 8) or an active control group (CON, n = 7). Before and after training, participants performed countermovement jumps (CMJ), drop-jumps from a 20-cm drop-height (DJ20), a maximal kicking velocity test (MKV), the 15-m linear sprint-time test, the Meylan test for the assessment of change of direction ability (CoDA), and the Yo-Yo intermittent recovery endurance test (Yo-YoIR1). Results revealed significant main effects of time for the CMJ, DJ20, MKV, 15-m sprint, CoDA, and the Yo-YoIR1 (all p < 0.001; d = 0.57-0.83). Significant group × time interactions were observed for the CMJ, DJ20, MKV, 15-m sprint, CoDA, and the Yo-YoIR1 (all p < 0.05; d = 0.36-0.51). Post-hoc analyses showed similar improvements for PJT-1 and PJT-2 groups in CMJ (Δ10.6\%, d = 0.37; and Δ10.1\%, d = 0.51, respectively), DJ20 (Δ12.9\%, d = 0.47; and Δ13.1\%, d = 0.54, respectively), MKV (Δ8.6\%, d = 0.52; and Δ9.1\%, d = 0.47, respectively), 15-m sprint (Δ8.3\%, d = 2.25; and Δ9.5\%, d = 2.67, respectively), CoDA (Δ7.5\%, d = 1.68; and Δ7.4\%, d = 1.16, respectively), and YoYoIR1 (Δ10.3\%, d = 0.22; and Δ9.9\%, d = 0.26, respectively). No significant pre-post changes were found for CON (all p > 0.05; Δ0.5-4.2\%, d = 0.03-0.2). In conclusion, higher PJT exposure in terms of session frequency has no extra effects on female soccer players' physical fitness development when jump volume is equated during a short-term (i.e., 8 weeks) training program. From this, it follows that one PJT session per week combined with regular soccer-specific training appears to be sufficient to induce physical fitness improvements in amateur female soccer players.}, language = {en} } @article{LesinskiPrieskeBeurskensetal.2017, author = {Lesinski, Melanie and Prieske, Olaf and Beurskens, Rainer and Behm, David George and Granacher, Urs}, title = {Effects of drop height and surface instability on neuromuscular activation during drop jumps}, series = {Scandinavian journal of medicine \& science in sports}, volume = {27}, journal = {Scandinavian journal of medicine \& science in sports}, publisher = {Wiley}, address = {Hoboken}, issn = {0905-7188}, doi = {10.1111/sms.12732}, pages = {1090 -- 1098}, year = {2017}, abstract = {The purpose of this study was to examine whether drop height-induced changes in leg muscle activity during drop jumps (DJ) are additionally modulated by surface condition. Twenty-four healthy participants (23.7 +/- 1.8years) performed DJs on a force plate on stable, unstable, and highly unstable surfaces using different drop heights (i.e., 20cm, 40cm, 60cm). Electromyographic (EMG) activity of soleus (SOL), gastrocnemius (GM), tibialis anterior (TA) muscles and coactivation of TA/SOL and TA/GM were analyzed for time intervals 100ms prior to ground contact (preactivation) and 30-60ms after ground contact [short latency response (SLR)]. Increasing drop heights resulted in progressively increased SOL and GM activity during preactivation and SLR (P<0.01; 1.01 d 5.34) while TA/SOL coactivation decreased (P<0.05; 0.51 d 3.01). Increasing surface instability produced decreased activities during preactivation (GM) and SLR (GM, SOL) (P<0.05; 1.36 d 4.30). Coactivation increased during SLR (P<0.05; 1.50 d 2.58). A significant drop heightxsurface interaction was observed for SOL during SLR. Lower SOL activity was found on unstable compared to stable surfaces for drop heights 40cm (P<0.05; 1.25 d 2.12). Findings revealed that instability-related changes in activity of selected leg muscles are minimally affected by drop height.}, language = {en} } @article{PrieskeChaabenePutaetal.2019, author = {Prieske, Olaf and Chaabene, Helmi and Puta, Christian and Behm, David George and B{\"u}sch, Dirk and Granacher, Urs}, title = {Effects of Drop Height on Jump Performance in Male and Female Elite Adolescent Handball Players}, series = {International journal of sports physiology and performance}, volume = {14}, journal = {International journal of sports physiology and performance}, number = {5}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1555-0265}, doi = {10.1123/ijspp.2018-0482}, pages = {674 -- 680}, year = {2019}, abstract = {Purpose: To examine the effects of drop height on drop-jump (DJ) performance and on associations between DJ and horizontal-jump/sprint performances in adolescent athletes. Methods: Male (n = 119, 2.5 [0.6] y post-peak-height velocity) and female (n = 120, 2.5 [0.5] y post-peak-height velocity) adolescent handball players (national level) performed DJs in randomized order using 3 drop heights (20, 35, and 50 cm). DJ performance (jump height, reactive strength index [RSI]) was analyzed using the Optojump Next system. In addition, correlations were computed between DJ height and RSI with standing-long-jump and 20-m linear-sprint performances. Results: Statistical analyses revealed medium-size main effects of drop height for DJ height and RSI (P <.001, 0.63 <= d <= 0.71). Post hoc tests indicated larger DJ heights from 20 to 35 and 35 to 50 cm (P <=.031, 0.33 <= d <= 0.71) and better RSI from 20- to 35-cm drop height (P <.001, d = 0.77). No significant difference was found for RSI between 35- and 50-cm drop height. Irrespective of drop height, associations of DJ height and RSI were small with 5-m-split time (-.27 <= r <=.05), medium with 10-m-split time (-.44 <= r <=.14), and medium to large with 20-m sprint time and standing-long-jump distance (-.57 <= r <=.22). Conclusions: The present findings indicate that, irrespective of sex, 35-cm drop heights are best suited to induce rapid and powerful DJ performance (ie, RSI) during reactive strength training in elite adolescent handball players. Moreover, training-related gains in DJ performance may at least partly translate to gains in horizontal jump and longer sprint distances (ie, >= 20-m) and/or vice versa in male and female elite adolescent athletes, irrespective of drop height.}, language = {en} } @article{LesinskiPrieskeBeurskensetal.2017, author = {Lesinski, Melanie and Prieske, Olaf and Beurskens, Rainer and Behm, David George and Granacher, Urs}, title = {Effects of Drop-height and Surface Instability on Jump Performance and Knee Kinematics}, series = {International journal of sports medicine}, volume = {39}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0043-117610}, pages = {50 -- 57}, year = {2017}, abstract = {The purpose of this study was to examine the combined effects of drop-height and surface condition on drop jump (DJ) performance and knee joint kinematics. DJ performance, sagittal and frontal plane knee joint kinematics were measured in jump experienced young male and female adults during DJs on stable, unstable and highly unstable surfaces using different drop-heights (20, 40, 60 cm). Findings revealed impaired DJ performance (Δ5-16\%; p<0.05; 1.43≤d≤2.82), reduced knee valgus motion (Δ33-52\%; p<0.001; 2.70≤d≤3.59), and larger maximum knee flexion angles (Δ13-19\%; p<0.01; 1.74≤d≤1.75) when using higher (60 cm) compared to lower drop-heights (≤40 cm). Further, lower knee flexion angles and velocity were found (Δ8-16\%; p<0.01; 1.49≤d≤2.38) with increasing surface instability. When performing DJs from high (60 cm) compared to moderate drop-heights (40 cm) on highly unstable surfaces, higher knee flexion velocity and maximum knee valgus angles were found (Δ15-19\%; p<0.01; 1.50≤d≤1.53). No significant main and/or interaction effects were observed for the factor sex. In conclusion, knee motion strategies were modified by the factors 'drop-height' and/or 'surface instability'. The combination of high drop-heights (>40 cm) together with highly unstable surfaces should be used cautiously during plyometrics because this may increase the risk of injury due to higher knee valgus stress.}, language = {en} } @article{ThielePrieskeLesinskietal.2020, author = {Thiele, Dirk and Prieske, Olaf and Lesinski, Melanie and Granacher, Urs}, title = {Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00888}, pages = {12}, year = {2020}, abstract = {Strength training is an important means for performance development in young rowers. The purpose of this study was to examine the effects of a 9-week equal volume heavy-resistance strength training (HRST) versus strength endurance training (SET) in addition to regular rowing training on primary (e.g., maximal strength/power) and secondary outcomes (e.g., balance) in young rowers. Twenty-six female elite adolescent rowers were assigned to an HRST (n = 12; age: 13.2 ± 0.5 yrs; maturity-offset: +2.0 ± 0.5 yrs) or a SET group (n = 14; age: 13.1 ± 0.5 yrs; maturity-offset: +2.1 ± 0.5 yrs). HRST and SET comprised lower- (i.e., leg press/knee flexion/extension), upper-limbs (i.e., bench press/pull; lat-pull down), and complex exercises (i.e., rowing ergometer). HRST performed four sets with 12 repetitions per set at an intensity of 75-95\% of the one-repetition maximum (1-RM). SET conducted four sets with 30 repetitions per set at 50-60\% of the 1-RM. Training volume was matched for overall repetitions × intensity × training per week. Pre-post training, tests were performed for the assessment of primary [i.e., maximal strength (e.g., bench pull/knee flexion/extension 1-RM/isometric handgrip test), muscle power (e.g., medicine-ball push test, triple hop, drop jump, and countermovement jump), anaerobic endurance (400-m run), sport-specific performance (700-m rowing ergometer trial)] and secondary outcomes [dynamic balance (Y-balance test), change-of-direction (CoD) speed (multistage shuttle-run test)]. Adherence rate was >87\% and one athlete of each group dropped out. Overall, 24 athletes completed the study and no test or training-related injuries occurred. Significant group × time interactions were observed for maximal strength, muscle power, anaerobic endurance, CoD speed, and sport-specific performance (p ≤ 0.05; 0.45 ≤ d ≤ 1.11). Post hoc analyses indicated larger gains in maximal strength and muscle power following HRST (p ≤ 0.05; 1.81 ≤ d ≤ 3.58) compared with SET (p ≤ 0.05; 1.04 ≤ d ≤ 2.30). Furthermore, SET (p ≤ 0.01; d = 2.08) resulted in larger gains in sport-specific performance compared with HRST (p < 0.05; d = 1.3). Only HRST produced significant pre-post improvements for anaerobic endurance and CoD speed (p ≤ 0.05; 1.84 ≤ d ≤ 4.76). In conclusion, HRST in addition to regular rowing training was more effective than SET to improve selected measures of physical fitness (i.e., maximal strength, muscle power, anaerobic endurance, and CoD speed) and SET was more effective than HRST to enhance sport-specific performance gains in female elite young rowers.}, language = {en} } @article{LesinskiPrieskeDempsetal.2016, author = {Lesinski, Melanie and Prieske, Olaf and Demps, Marie and Granacher, Urs}, title = {Effects of fatigue and surface instability on neuromuscular performance during jumping}, series = {Der Schmerz : Organ der Deutschen Gesellschaft zum Studium des Schmerzes, der {\~A}-sterreichischen Schmerzgesellschaft und der Deutschen Interdisziplin{\~A}\iren Vereinigung f{\~A}¼r Schmerztherapie}, volume = {26}, journal = {Der Schmerz : Organ der Deutschen Gesellschaft zum Studium des Schmerzes, der {\~A}-sterreichischen Schmerzgesellschaft und der Deutschen Interdisziplin{\~A}\iren Vereinigung f{\~A}¼r Schmerztherapie}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0905-7188}, doi = {10.1111/sms.12548}, pages = {1140 -- 1150}, year = {2016}, abstract = {It has previously been shown that fatigue and unstable surfaces affect jump performance. However, the combination thereof is unresolved. Thus, the purpose of this study was to examine the effects of fatigue and surface instability on jump performance and leg muscle activity. Twenty elite volleyball players (18 +/- 2 years) performed repetitive vertical double-leg box jumps until failure. Before and after a fatigue protocol, jump performance (i.e., jump height) and electromyographic activity of selected lower limb muscles were recorded during drop jumps (DJs) and countermovement jumps (CMJs) on a force plate on stable and unstable surfaces (i.e., balance pad on top of force plate). Jump performance (3-7\%; P < 0.05; 1.14 <= d <= 2.82), and muscle activity (2-27\%; P < 0.05; 0.59 <= d <= 3.13) were lower following fatigue during DJs and CMJs, and on unstable compared with stable surfaces during DJs only (jump performance: 8\%; P < 0.01; d = 1.90; muscle activity: 9-25\%; P < 0.05; 1.08 <= d <= 2.54). No statistically significant interactions of fatigue by surface condition were observed. Our findings revealed that fatigue impairs neuromuscular performance during DJs and CMJs in elite volleyball players, whereas surface instability affects neuromuscular DJ performance only. Absent fatigue x surface interactions indicate that fatigue-induced changes in jump performance are similar on stable and unstable surfaces in jump-trained athletes.}, language = {en} } @article{BeurskensMuehlbauerGranacheretal.2015, author = {Beurskens, Rainer and M{\"u}hlbauer, Thomas and Granacher, Urs and Gollhofer, Albert and Cardinale, Marco}, title = {Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults}, series = {PLoS one}, journal = {PLoS one}, publisher = {Public Library of Science}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0118535}, pages = {13}, year = {2015}, abstract = {The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80\% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults.}, language = {en} } @article{BeurskensGollhoferMuehlbaueretal.2015, author = {Beurskens, Rainer and Gollhofer, Albert and M{\"u}hlbauer, Thomas and Cardinale, Marco and Granacher, Urs}, title = {Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {2}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0118535}, pages = {13}, year = {2015}, abstract = {The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80\% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults.}, language = {en} } @article{NegraChaabeneHammamietal.2016, author = {Negra, Yassine and Chaabene, Helmi and Hammami, Mehrez and Hachana, Younes and Granacher, Urs}, title = {EFFECTS OF HIGH-VELOCITY RESISTANCE TRAINING ON ATHLETIC PERFORMANCE IN PREPUBERAL MALE SOCCER ATHLETES}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {30}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, publisher = {Wiley-Blackwell}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000001433}, pages = {3290 -- 3297}, year = {2016}, abstract = {The aim of this study was to assess the effectiveness of a 12-week in-season low-to-moderate load high-velocity resistance training (HVRT) in addition to soccer training as compared with soccer training only on proxies of athletic performance in prepubertal soccer players. Twenty-four male soccer players performed 2 different protocols: (a) regular soccer training with 5 sessions per week (n = 11; age = 12.7 +/- 0.3 years) and (b) regular soccer training with 3 sessions per week and HVRT with 2 sessions per week (n = 13; age = 12.8 +/- 0.2 years). The outcome measures included tests for the assessment of muscle strength (e.g., 1 repetition maximum [1RM] half-squat tests), jump ability (e.g., countermovement jump, squat jump [SJ], standing long jump [SLJ], and multiple 5-bound tests [MB5s]), linear speed (e.g., 5-, 10-, 20-, and 30-m sprint tests), and change of direction (e.g., T-test and Illinois change of direction test). Results revealed significant group 3 test interactions for the SJ test (p <= 0.05, d = 0.59) and the SLJ test (p < 0.01, d = 0.83). Post hoc tests illustrated significant pre-post changes in the HVRT group (SJ: Delta 22\%, p < 0.001, d = 1.26; SLJ: Delta 15\%, p < 0.001, d = 1.30) but not in the control group. In addition, tendencies toward significant interaction effects were found for the 1RM half-squat (p = 0.08, d = 0.54) and the 10-m sprint test (p = 0.06, d = 0.57). Significant pre-post changes were found for both parameters in the HVRT group only (1RM: Delta 25\%, p < 0.001, d = 1.23; 10-m sprint: Delta 7\%, p < 0.0001, d = 1.47). In summary, in-season low-to-moderate load HVRT conducted in combination with regular soccer training is a safe and feasible intervention that has positive effects on maximal strength, vertical and horizontal jump and sprint performance as compared with soccer training only.}, language = {en} } @article{GebelLuederGranacher2019, author = {Gebel, Arnd and L{\"u}der, Benjamin and Granacher, Urs}, title = {Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01135}, pages = {13}, year = {2019}, abstract = {Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5\% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents.}, language = {en} } @article{PrieskeChaabeneKullmannetal.2022, author = {Prieske, Olaf and Chaabene, Helmi and Kullmann, Niclas and Granacher, Urs}, title = {Effects of Individualized Versus Traditional Power Training on Strength, Power, Jump Performances, and Body Composition in Young Male Nordic Athletes}, series = {International journal of sports physiology and performance}, volume = {17}, journal = {International journal of sports physiology and performance}, number = {4}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1555-0265}, doi = {10.1123/ijspp.2021-0074}, pages = {541 -- 548}, year = {2022}, abstract = {Purpose: This study aimed to examine the effects of individualized-load power training (IPT) versus traditional moderate-load power training (TPT) on strength, power, jump performance, and body composition in elite young Nordic athletes. Methods: In a randomized crossover design, 10 young male athletes (ski jumpers, Nordic combined athletes) age 17.5 (0.6) years (biological maturity status: +3.5 y postpeak height velocity) who competed on a national or international level performed 5 weeks of IPT (4 x 5 repetitions at 49\%-72\% 1-repetiton maximum [RM]) and TPT (5 x 5 repetitions at 50\%-60\% 1-RM) in addition to their regular training. Testing before, between, and after both training blocks comprised the assessment of muscle strength (loaded back squat 3-RM), power (maximal loaded back squat power), jump performance (eg, drop-jump height, reactive strength index), and body composition (eg, skeletal muscle mass). Results: Significant, large-size main effects for time were found for muscle strength (P < .01; g = 2.7), reactive strength index (P = .03; g= 1.6), and drop jump height (P = .02; g= 1.9) irrespective of the training condition (IPT, TPT). No significant time-by-condition interactions were observed. For measures of body composition, no significant main effects of condition and time or time-by-condition interactions were found. Conclusions: Our findings demonstrate that short-term IPT and TPT at moderate loads in addition to regular training were equally effective in improving measures of muscle strength (loaded back squat 3-RM) and vertical jump performance (reactive strength index, drop jump, and height) in young Nordic athletes.}, language = {en} } @article{ZinkeWarnkeGaebleretal.2019, author = {Zinke, Fridolin and Warnke, Torsten and G{\"a}bler, Martijn and Granacher, Urs}, title = {Effects of Isokinetic Training on Trunk Muscle Fitness and Body Composition in World-Class Canoe Sprinters}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.00021}, pages = {10}, year = {2019}, abstract = {In canoe sprint, the trunk muscles play an important role in stabilizing the body in an unstable environment (boat) and in generating forces that are transmitted through the shoulders and arms to the paddle for propulsion of the boat. Isokinetic training is well suited for sports in which propulsion is generated through water resistance due to similarities in the resistive mode. Thus, the purpose of this study was to determine the effects of isokinetic training in addition to regular sport-specific training on trunk muscular fitness and body composition in world-class canoeists and to evaluate associations between trunk muscular fitness and canoe-specific performance. Nine world-class canoeists (age: 25.6 ± 3.3 years; three females; four world champions; three Olympic gold medalists) participated in an 8-week progressive isokinetic training with a 6-week block "muscle hypertrophy" and a 2-week block "muscle power." Pre- and post-tests included the assessment of peak isokinetic torque at different velocities in concentric (30 and 140∘s-1) and eccentric (30 and 90∘s-1) mode, trunk muscle endurance, and body composition (e.g., body fat, segmental lean mass). Additionally, peak paddle force was assessed in the flume at a water current of 3.4 m/s. Significant pre-to-post increases were found for peak torque of the trunk rotators at 30∘s-1 (p = 0.047; d = 0.4) and 140∘s-1 (p = 0.014; d = 0.7) in concentric mode. No significant pre-to-post changes were detected for eccentric trunk rotator torque, trunk muscle endurance, and body composition (p > 0.148). Significant medium-to-large correlations were observed between concentric trunk rotator torque but not trunk muscle endurance and peak paddle force, irrespective of the isokinetic movement velocity (all r ≥ 0.886; p ≤ 0.008). Isokinetic trunk rotator training is effective in improving concentric trunk rotator strength in world-class canoe sprinters. It is recommended to progressively increase angular velocity from 30∘s-1 to 140∘s-1 over the course of the training period.}, language = {en} } @article{JafarnezhadgeroFakhriGranacher2021, author = {Jafarnezhadgero, Amir Ali and Fakhri, Ehsan and Granacher, Urs}, title = {Effects of nail softness and stiffness with distance running shoes on ground reaction forces and vertical loading rates in male elite long-distance runners with pronated feet}, series = {BMC sports science, medicine \& rehabilitation}, volume = {13}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-021-00352-7}, pages = {1 -- 9}, year = {2021}, abstract = {Background To improve propulsion during running, athletes often wear spike shoes designed for training and/or competition. Running with spike shoes may cause pain and/or injuries. To address this problem, a modified spike shoe was tested. This study aimed to evaluate the effects of running with dual-versus single-stiffness spike running shoes on running mechanics in long-distance runners with pronated feet. Methods Sixteen male elite (national competitive level) runners (5000 or 10,000 m) aged 28.2 ± 2.5 years with pronated feet volunteered to participate in this study. To be included, participants had to have achieved personal best race times over 5- and/or 10-km races under 17 or 34 min during official running competitions. All participants were heel strikers and had a history of 11.2 ± 4.2 years of training. For the assessment of running kinetics, a force plate was imbedded into a walkway. Running kinematics were recorded using a Vicon-motion-capture system. Nike Zoom Rival shoes (Nike, Nike Zoom Rival, USA) were selected and adapted according to spike softness and stiffness. Participants ran at a constant speed of ~4.0 m/s across the walkway with both shoe conditions in randomized order. Six trials were recorded per condition. The main outcomes included peak ground reaction forces and their time-to-peak, average and instantaneous vertical loading rates, free moments, and peak ankle eversion angles. Results Paired t-tests revealed significantly lower lateral (p = 0.021, d = 0.95) and vertical (p = 0.010, d = 1.40) forces at heel contact during running with dual-stiffness spike shoes. Running with dual-stiffness spike shoes resulted in a significantly longer time-to-peak vertical (p = 0.004, d = 1.40) force at heel contact. The analysis revealed significantly lower average (p = 0.005, d = 0.46) and instantaneous (p = 0.021, d = 0.49) loading rates and peak negative free moment amplitudes (p = 0.016, d = 0.81) when running with dual-stiffness spike shoes. Finally, significantly lower peak ankle eversion angles were observed with dual-stiffness spike shoes (p < 0.001, d = 1.29). Conclusions Running in dual- compared with single-stiffness spike distance running shoes resulted in lower loading rates, free moment amplitudes, and peak ankle eversion angles of long-distance runners with pronated feet.}, language = {en} } @article{ElAshkerChaabenePrieskeetal.2019, author = {El-Ashker, Said and Chaabene, Helmi and Prieske, Olaf and Abdelkafy, Ashraf and Ahmed, Mohamed A. and Muaidi, Qassim I. and Granacher, Urs}, title = {Effects of Neuromuscular Fatigue on Eccentric Strength and Electromechanical Delay of the Knee Flexors}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.00782}, pages = {9}, year = {2019}, abstract = {Purpose: To examine the effects of fatiguing isometric contractions on maximal eccentric strength and electromechanical delay (EMD) of the knee flexors in healthy young adults of different training status. Methods: Seventy-five male participants (27.7 ± 5.0 years) were enrolled in this study and allocated to three experimental groups according to their training status: athletes (ATH, n = 25), physically active adults (ACT, n = 25), and sedentary participants (SED, n = 25). The fatigue protocol comprised intermittent isometric knee flexions (6-s contraction, 4-s rest) at 60\% of the maximum voluntary contraction until failure. Pre- and post-fatigue, maximal eccentric knee flexor strength and EMDs of the biceps femoris, semimembranosus, and semitendinosus muscles were assessed during maximal eccentric knee flexor actions at 60, 180, and 300°/s angular velocity. An analysis of covariance was computed with baseline (unfatigued) data included as a covariate. Results: Significant and large-sized main effects of group (p ≤ 0.017, 0.87 ≤ d ≤ 3.69) and/or angular velocity (p < 0.001, d = 1.81) were observed. Post hoc tests indicated that regardless of angular velocity, maximal eccentric knee flexor strength was lower and EMD was longer in SED compared with ATH and ACT (p ≤ 0.025, 0.76 ≤ d ≤ 1.82) and in ACT compared with ATH (p = ≤0.025, 0.76 ≤ d ≤ 1.82). Additionally, EMD at post-test was significantly longer at 300°/s compared with 60 and 180°/s (p < 0.001, 2.95 ≤ d ≤ 4.64) and at 180°/s compared with 60°/s (p < 0.001, d = 2.56), irrespective of training status. Conclusion: The main outcomes revealed significantly higher maximal eccentric strength and shorter eccentric EMDs of knee flexors in individuals with higher training status (i.e., athletes) following fatiguing exercises. Therefore, higher training status is associated with better neuromuscular functioning (i.e., strength, EMD) of the hamstring muscles in fatigued condition. Future longitudinal studies are needed to substantiate the clinical relevance of these findings.}, language = {en} } @article{ZouhalAbderrahmanDupontetal.2019, author = {Zouhal, Hassane and Abderrahman, Abderraouf Ben and Dupont, Gregory and Truptin, Pablo and Le Bris, R{\´e}gis and Le Postec, Erwan and Sghaeir, Zouita and Brughelli, Matt and Granacher, Urs and Bideau, Benoit}, title = {Effects of Neuromuscular Training on Agility Performance in Elite Soccer Players}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.00947}, pages = {9}, year = {2019}, abstract = {Background: Agility in general and change-of-direction speed (CoD) in particular represent important performance determinants in elite soccer. Objectives: The objectives of this study were to determine the effects of a 6-week neuromuscular training program on agility performance, and to determine differences in movement times between the slower and faster turning directions in elite soccer players. Materials and Methods: Twenty male elite soccer players from the Stade Rennais Football Club (Ligue 1, France) participated in this study. The players were randomly assigned to a neuromuscular training group (NTG, n = 10) or an active control (CG, n = 10) according to their playing position. NTG participated in a 6-week, twice per week neuromuscular training program that included CoD, plyometric and dynamic stability exercises. Neuromuscular training replaced the regular warm-up program. Each training session lasted 30 min. CG continued their regular training program. Training volume was similar between groups. Before and after the intervention, the two groups performed a reactive agility test that included 180° left and right body rotations followed by a 5-m linear sprint. The weak side was defined as the left/right turning direction that produced slower overall movement times (MT). Reaction time (RT) was assessed and defined as the time from the first appearance of a visual stimulus until the athlete's first movement. MT corresponded to the time from the first movement until the athlete reached the arrival gate (5 m distance). Results: No significant between-group baseline differences were observed for RT or MT. Significant group x time interactions were found for MT (p = 0.012, effect size = 0.332, small) for the slower and faster directions (p = 0.011, effect size = 0.627, moderate). Significant pre-to post improvements in MT were observed for NTG but not CG (p = 0.011, effect size = 0.877, moderate). For NTG, post hoc analyses revealed significant MT improvements for the slower (p = 0.012, effect size = 0.897, moderate) and faster directions (p = 0.017, effect size = 0.968, moderate). Conclusion: Our results illustrate that 6 weeks of neuromuscular training with two sessions per week included in the warm-up program, significantly enhanced agility performance in elite soccer players. Moreover, improvements were found on both sides during body rotations. Thus, practitioners are advised to focus their training programs on both turning directions.}, language = {en} } @article{GebelBuschStelzeletal.2022, author = {Gebel, Arnd and Busch, Aglaja and Stelzel, Christine and Hortob{\´a}gyi, Tibor and Granacher, Urs}, title = {Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults}, series = {Frontiers in Human Neuroscience}, volume = {16}, journal = {Frontiers in Human Neuroscience}, publisher = {Frontiers Media S.A.}, address = {Lausanne, Schweiz}, issn = {1662-5161}, doi = {10.3389/fnhum.2022.871930}, pages = {1 -- 14}, year = {2022}, abstract = {Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4-7.5 Hz), alpha-2 (10.5-12.5 Hz), beta-1 (13-18 Hz), and beta-2 (18.5-25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2\%) and CoPv (p = 0.009, d = 0.36, Δ 9.2\%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9\%) compared to MF (p = 0.001, d = 1.03, Δ 2.5\%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations.}, language = {en} } @article{PrieskeDalagerHerzetal.2019, author = {Prieske, Olaf and Dalager, Tina and Herz, Michael and Hortobagyi, Tibor and Sjogaard, Gisela and Sogaard, Karen and Granacher, Urs}, title = {Effects of Physical Exercise Training in the Workplace on Physical Fitness: A Systematic Review and Meta-analysis}, series = {Sports medicine}, volume = {49}, journal = {Sports medicine}, number = {12}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-019-01179-6}, pages = {1903 -- 1921}, year = {2019}, abstract = {Background There is evidence that physical exercise training (PET) conducted at the workplace is effective in improving physical fitness and thus health. However, there is no current systematic review available that provides high-level evidence regarding the effects of PET on physical fitness in the workforce. Objectives To quantify sex-, age-, and occupation type-specific effects of PET on physical fitness and to characterize dose-response relationships of PET modalities that could maximize gains in physical fitness in the working population. Data Sources A computerized systematic literature search was conducted in the databases PubMed and Cochrane Library (2000-2019) to identify articles related to PET in workers. Study Eligibility Criteria Only randomized controlled trials with a passive control group were included if they investigated the effects of PET programs in workers and tested at least one fitness measure. Study Appraisal and Synthesis Methods Weighted mean standardised mean differences (SMDwm) were calculated using random effects models. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (e.g., training frequency, session duration, intensity) on the effectiveness of PET on measures of physical fitness. Further, subgroup univariate analyses were computed for each training modality. Additionally, methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, 3423 workers aged 30-56 years participated in 17 studies (19 articles) that were eligible for inclusion. Methodological quality of the included studies was moderate with a median PEDro score of 6. Our analyses revealed significant, small-sized effects of PET on cardiorespiratory fitness (CRF), muscular endurance, and muscle power (0.29 <= SMDwm <= 0.48). Medium effects were found for CRF and muscular endurance in younger workers (<= 45 years) (SMDwm = 0.71) and white-collar workers (SMDwm = 0.60), respectively. Multivariate random effects meta-regression for CRF revealed that none of the examined training modalities predicted the effects of PET on CRF (R-2 = 0). Independently computed subgroup analyses showed significant PET effects on CRF when conducted for 9-12 weeks (SMDwm = 0.31) and for 17-20 weeks (SMDwm = 0.74). Conclusions PET effects on physical fitness in healthy workers are moderated by age (CRF) and occupation type (muscular endurance). Further, independently computed subgroup analyses indicated that the training period of the PET programs may play an important role in improving CRF in workers.}, language = {en} } @article{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, pages = {22}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @article{NegraChaabeneSammoudetal.2017, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Bouguezzi, Raja and Mkaouer, Bessem and Hachana, Younes and Granacher, Urs}, title = {EFFECTS OF PLYOMETRIC TRAINING ON COMPONENTS OF PHYSICAL FITNESS IN PREPUBERAL MALE SOCCER ATHLETES: THE ROLE OF SURFACE INSTABILITY}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {31}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, pages = {3295 -- 3304}, year = {2017}, abstract = {Previous studies contrasted the effects of plyometric training (PT) conducted on stable vs. unstable surfaces on components of physical fitness in child and adolescent soccer players. Depending on the training modality (stable vs. unstable), specific performance improvements were found for jump (stable PT) and balance performances (unstable PT). In an attempt to combine the effects of both training modalities, this study examined the effects of PT on stable surfaces compared with combined PT on stable and unstable surfaces on components of physical fitness in prepuberal male soccer athletes. Thirty-three boys were randomly assigned to either a PT on stable surfaces (PTS; n = 17; age = 12.1 +/- 0.5 years; height = 151.6 +/- 5.7 cm; body mass = 39.2 +/- 6.5 kg; and maturity offset = 22.3 +/- 0.5 years) or a combined PT on stable and unstable surfaces (PTC; n = 16; age = 12.2 +/- 0.6 years; height = 154.6 +/- 8.1 cm; body mass = 38.7 +/- 5.0 kg; and maturity offset = 22.2 +/- 0.6 years). Both intervention groups conducted 4 soccer-specific training sessions per week combined with either 2 PTS or PTC sessions. Before and after 8 weeks of training, proxies of muscle power (e.g., countermovement jump [CMJ], standing long jump [SLJ]), muscle strength (e.g., reactive strength index [RSI]), speed (e.g., 20-m sprint test), agility (e.g., modified Illinois change of direction test [MICODT]), static balance (e.g., stable stork bal-ance test [SSBT]), and dynamic balance (unstable stork balance test [USBT]) were tested. An analysis of covariance model was used to test between-group differences (PTS vs. PTC) at posttest using baseline outcomes as covariates. No significant between-group differences at posttest were observed for CMJ (p > 0.05, d = 0.41), SLJ (p > 0.05, d = 0.36), RSI (p > 0.05, d = 0.57), 20-m sprint test (p > 0.05, d = 0.06), MICODT (p > 0.05, d = 0.23), and SSBT (p > 0.05, d = 0.20). However, statistically significant between-group differences at posttest were noted for the USBT (p < 0.01, d = 1.49) in favor of the PTC group. For most physical fitness tests (except RSI), significant pre-to-post improvements were observed for both groups (p < 0.01, d = 0.55-3.96). Eight weeks of PTS or PTC resulted in similar performance improvements in components of physical fitness except for dynamic balance. From a performance-enhancing perspective, PTC is recommended for pediatric strength and conditioning coaches because it produced comparable training effects as PTS on proxies of muscle power, muscle strength, speed, agility, static balance, and additional effects on dynamic balance.}, language = {en} } @article{NegraChaabeneSammoudetal.2017, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Bouguezzi, Raja and Abbes, Mohamed Aymen and Hachana, Younes and Granacher, Urs}, title = {Effects of Plyometric Training on Physical Fitness in Prepuberal Soccer Athletes}, series = {International journal of sports medicine}, volume = {38}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0042-122337}, pages = {370 -- 377}, year = {2017}, abstract = {This study aimed at examining the effects of plyometric training on stable (SPT) vs. unstable (UPT) surfaces on physical fitness in prepuberal soccer players. Male athletes were randomly assigned to SPT (n = 18; age = 12.7 +/- 0.2 years) or UPT (n = 16; age = 12.2 +/- 0.5 years). Both groups conducted 3 regular soccer training sessions per week combined with either 2 SPT or UPT sessions. Assessment of jumping ability (countermovement jump [CMJ], and standing long jump [SLJ]), speed (10-m, 20-m, 30-m sprint), agility (Illinois agility test [IAT]), and balance (stable [SSBT], unstable [USBT] stork balance test; stable [SYBT], unstable [UYBT] Y balance test) was conducted pre-and post-training. An ANCO-VA model was used to test for between-group differences (SPT vs. UPT) at post-test using baseline values as covariates. No significant differences were found for CMJ height (p > 0.05, d = 0.54), SLJ (p > 0.05; d = 0.81), 10-m, 20-m, and 30-m sprint performances (p > 0.05, d = 0.00-0.24), IAT (p > 0.05, d = 0.48), and dynamic balance (SYBT and UYBT, both p > 0.05, d = 0.39, 0.08, respectively). Statistically significant between-group differences were detected for the USBT (p < 0.01, d = 1.86) and the SSBT (p < 0.01, d = 1.75) in favor of UPT. Following 8 weeks of SPT or UPT in prepuberal athletes, similar performance levels were observed in both groups for measures of jumping ability, speed, dynamic balance, and agility. However, if the goal is to additionally enhance static balance, UPT has an advantage over SPT.}, language = {en} } @article{BeijersbergenHortobagyiBeurskensetal.2016, author = {Beijersbergen, Chantal M. I. and Hortobagyi, Tibor and Beurskens, Rainer and Lenzen-Grossimlinghaus, Romana and Gabler, Martijn and Granacher, Urs}, title = {Effects of Power Training on Mobility and Gait Biomechanics in Old Adults with Moderate Mobility Disability: Protocol and Design of the Potsdam Gait Study (POGS)}, series = {Gerontology}, volume = {62}, journal = {Gerontology}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000444752}, pages = {597 -- 603}, year = {2016}, abstract = {Background: Walking speed decreases in old age. Even though old adults regularly participate in exercise interventions, we do not know how the intervention-induced changes in physical abilities produce faster walking. The Potsdam Gait Study (POGS) will examine the effects of 10 weeks of power training and detraining on leg muscle power and, for the first time, on complete gait biomechanics, including joint kinematics, kinetics, and muscle activation in old adults with moderate mobility disability. Methods/Design: POGS is a randomized controlled trial with two arms, each crossed over, without blinding. Arm 1 starts with a 10-week control period to assess the reliability of the tests and is then crossed over to complete 25-30 training sessions over 10 weeks. Arm 2 completes 25-30 exercise sessions over 10 weeks, followed by a 10-week follow-up (detraining) period. The exercise program is designed to improve lower extremity muscle power. Main outcome measures are: muscle power, gait speed, and gait biomechanics measured at baseline and after 10 weeks of training and 10 weeks of detraining. Discussion: It is expected that power training will increase leg muscle power measured by the weight lifted and by dynamometry, and these increased abilities become expressed in joint powers measured during gait. Such favorably modified powers will underlie the increase in step length, leading ultimately to a faster walking speed. POGS will increase our basic understanding of the biomechanical mechanisms of how power training improves gait speed in old adults with moderate levels of mobility disabilities. (C) 2016 S. Karger AG, Basel}, language = {en} } @article{ChaabenePrieskeMoranetal.2020, author = {Chaabene, Helmi and Prieske, Olaf and Moran, Jason and Negra, Yassine and Attia, Ahmed and Granacher, Urs}, title = {Effects of resistance training on Change-of-Direction speed in youth and young physically active and athletic adults: a systematic review with meta-analysis}, series = {Sports medicine : the world's premier sports medicine preview journal}, volume = {50}, journal = {Sports medicine : the world's premier sports medicine preview journal}, number = {8}, publisher = {Springer}, address = {Berlin [u.a.]}, issn = {0112-1642}, doi = {10.1007/s40279-020-01293-w}, pages = {1483 -- 1499}, year = {2020}, abstract = {Background Change-of-direction (CoD) speed is a physical fitness attribute in many field-based team and individual sports. To date, no systematic review with meta-analysis available has examined the effects of resistance training (RT) on CoD speed in youth and adults. Objective To aggregate the effects of RT on CoD speed in youth and young physically active and athletic adults, and to identify the key RT programme variables for training prescription. Data sources A systematic literature search was conducted with PubMed, Web of Science, and Google Scholar, with no date restrictions, up to October 2019, to identify studies related to the effects of RT on CoD speed. Study Eligibility Criteria Only controlled studies with baseline and follow-up measures were included if they examined the effects of RT (i.e., muscle actions against external resistances) on CoD speed in healthy youth (8-18 years) and young physically active/athletic male or female adults (19-28 years). Study Appraisal and Synthesis Methods A random-effects model was used to calculate weighted standardised mean differences (SMD) between intervention and control groups. In addition, an independent single training factor analysis (i.e., RT frequency, intensity, volume) was undertaken. Further, to verify if any RT variable moderated effects on CoD speed, a multivariate random-effects meta-regression was conducted. The methodological quality of the included studies was assessed using the physiotherapy evidence database (PEDro) scale. Results Fifteen studies, comprising 19 experimental groups, were included. The methodological quality of the studies was acceptable with a median PEDro score of 6. There was a significant large effect size of RT on CoD speed across all studies (SMD = - 0.82 [- 1.14 to - 0.49]). Subgroup analyses showed large effect sizes on CoD speed in males (SMD = - 0.95) contrasting with moderate improvements in females (SMD = - 0.60). There were large effect sizes on CoD speed in children (SMD = - 1.28) and adolescents (SMD = - 1.21) contrasting with moderate effects in adults (SMD = - 0.63). There was a moderate effect in elite athletes (SMD = - 0.69) contrasting with a large effect in subelite athletes (SMD = - 0.86). Differences between subgroups were not statistically significant. Similar improvements were observed regarding the effects of independently computed training variables. In terms of RT frequency, our results indicated that two sessions per week induced large effects on CoD speed (SMD = - 1.07) while programmes with three sessions resulted in moderate effects (SMD = - 0.53). For total training intervention duration, we observed large effects for <= 8 weeks (SMD = - 0.81) and > 8 weeks (SMD = - 0.85). For single session duration, we found large effects for <= 30 min and >= 45 min (both SMD = - 1.00). In terms of number of training sessions, we identified large effects for <= 16 sessions (SMD = - 0.83) and > 16 sessions (SMD = - 0.81). For training intensity, we found moderate effects for light-to-moderate (SMD = - 0.76) and vigorous-to-near maximal intensities (SMD = - 0.77). With regards to RT type, we observed large effects for free weights (SMD = - 0.99) and machine-based training (SMD = - 0.80). For combined free weights and machine-based training, moderate effects were identified (SMD = - 0.77). The meta-regression outcomes showed that none of the included training variables significantly predicted the effects of RT on CoD speed (R-2 = 0.00). Conclusions RT seems to be an effective means to improve CoD speed in youth and young physically active and athletic adults. Our findings indicate that the impact of RT on CoD speed may be more prominent in males than in females and in youth than in adults. Additionally, independently computed single factor analyses for different training variables showed that higher compared with lower RT intensities, frequencies, and volumes appear not to have an advantage on the magnitude of CoD speed improvements. In terms of RT type, similar improvements were observed following machine-based and free weights training.}, language = {en} } @article{LesinskiHerzSchmelcheretal.2020, author = {Lesinski, Melanie and Herz, Michael and Schmelcher, Alina and Granacher, Urs}, title = {Effects of resistance training on physical fitness in healthy children and adolescents}, series = {Sports medicine}, volume = {50}, journal = {Sports medicine}, number = {11}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-020-01327-3}, pages = {1901 -- 1928}, year = {2020}, abstract = {Background Over the past decades, an exponential growth has occurred with regards to the number of scientific publications including meta-analyses on youth resistance training (RT). Accordingly, it is timely to summarize findings from meta-analyses in the form of an umbrella review. Objectives To systematically review and summarise the findings of published meta-analyses that investigated the effects of RT on physical fitness in children and adolescents. Design Systematic umbrella review of meta-analyses. Data Sources Meta-analyses were identified using systematic literature searches in the databases PubMed, Web of Science, and Cochrane Library. Eligibility Criteria for Selecting Meta-analyses Meta-analyses that examined the effects of RT on physical fitness (e.g., muscle strength, muscle power) in healthy youth (<= 18 years). Results Fourteen meta-analyses were included in this umbrella review. Eleven of these meta-analyses reported between-subject effect sizes which are important to eliminate bias due to growth and maturation. RT produced medium-to-large effects on muscle strength, small-to-large effects on muscle power, small-to-medium effects on linear sprint, a medium effect on agility/change-of-direction speed, small-to-large effects on throwing performance, and a medium effect on sport-specific enhancement. There were few consistent moderating effects of maturation, age, sex, expertise level, or RT type on muscle strength and muscle power across the included meta-analyses. The analysed meta-analyses showed low-to-moderate methodological quality (AMSTAR2) as well as presented evidence of low-to-very low quality (GRADE). Conclusion This umbrella review proved the effectiveness of RT in youth on a high evidence level. The magnitude of effects varies according to the respective outcome measure and it appears to follow the principle of training specificity. Larger effect sizes were found for strength-related outcome measures. Future studies should consistently report data on participants' maturational status. More research is needed with prepubertal children and girls, irrespective of their maturational status.}, language = {en} } @article{PrieskeKruegerAehleetal.2018, author = {Prieske, Olaf and Kr{\"u}ger, Tom and Aehle, Markus and Bauer, Erik and Granacher, Urs}, title = {Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00156}, pages = {1 -- 10}, year = {2018}, abstract = {Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45-60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40\% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5\% for RST [90\%CI: (-1.1\%;10.1\%), d = 1.23] and 2.6\% for TPT [90\%CI: (0.4\%;4.8\%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to -6.3\% for RST [90\%CI: (-11.4\%;-1.1\%), d = 1.45) and -2.7\% for TPT [90\%CI: (-4.2\%;-1.2\%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.}, language = {en} } @article{JafarnezhadgeroAmirzadehFatollahietal.2022, author = {Jafarnezhadgero, Amir Ali and Amirzadeh, Nasrin and Fatollahi, Amir and Siahkouhian, Marefat and de Souza Castelo Oliveira, Anderson and Granacher, Urs}, title = {Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.822024}, pages = {1 -- 10}, year = {2022}, abstract = {Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability.}, language = {en} } @article{SinghKushwahSinghetal.2022, author = {Singh, Gaurav and Kushwah, Gaurav Singh and Singh, Tanvi and Thapa, Rohit Kumar and Granacher, Urs and Ramirez-Campillo, Rodrigo}, title = {Effects of sand-based plyometric-jump training in combination with endurance running on outdoor or treadmill surface on physical fitness in young adult males}, series = {Journal of sports science \& medicine}, volume = {21}, journal = {Journal of sports science \& medicine}, number = {2}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, doi = {10.52082/jssm.2022.277}, pages = {277 -- 286}, year = {2022}, abstract = {This study aimed at examining the effects of nine weeks of sand-based plyometric jump training (PJT) combined with endurance running on either outdoor or treadmill surface on measures of physical fitness. Male participants (age, 20.1 +/- 1.7 years) were randomly assigned to a sand-based PJT combined with endurance running on outdoor surface (OT, n = 25) or treadmill surface (TT, n = 25). The endurance miming intervention comprised a mixed training method, i.e., long slow distance, tempo, and interval running drills. A control group was additionally included in this study (CG, n = 25). Participants in CG followed their regular physical activity as OT and TT but did not receive any specific intervention. Individuals were assessed for their 50-m linear sprint time, standing long jump (SLJ) distance, cardiorespiratory fitness (i.e., Cooper test), forced vital capacity (FVC), calf girth, and resting heart rate (RHR). A three (groups: OT, TT, CG) by two (time: pre, post) ANOVA for repeated measures was used to analyze the exercise-specific effects. In case of significant group-by-time interactions, Bonferroni adjusted paired (within-group) and independent (between-group comparisons at post) t-tests were used for post-hoc analyses. Significant group-by-time interactions were found for all dependent variables (p < 0.001 - 0.002, eta(2)(p) = 0.16 - 0.78). Group-specific post-hoc tests showed improvements for all variables after OT (p < 0.001, Hedges'g effect size [g] = 0.05 - 1.94) and TT (p < 0.001, g = 0.04 - 2.73), but not in the CG (p = 0.058 - 1.000, g = 0.00 - 0.34). Compared to CG, OT showed larger SLJ (p = 0.001), cardiorespiratory fitness (p = 0.004), FVC (p = 0.008), and RHR (p < 0.001) improvements. TT showed larger improvements in SLJ (p = 0.036), cardiorespiratory fitness (p < 0.001), and RHR (p < 0.001) compared with CG. Compared to OT, TT showed larger improvements for SLJ (p = 0.018). In conclusion, sand-based PJT combined with either OT or TT similarly improved most measures of physical fitness, with greater SLJ improvement after TT. Coaches may use both concurrent exercise regimes based on preferences and logistical constrains (e.g., weather; access to treadmill equipment).}, language = {en} } @article{LesinskiPrieskeHelmetal.2017, author = {Lesinski, Melanie and Prieske, Olaf and Helm, Norman and Granacher, Urs}, title = {Effects of Soccer Training on Anthropometry, Body Composition, and Physical Fitness during a Soccer Season in Female Elite Young Athletes: A Prospective Cohort Study}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.01093}, pages = {13}, year = {2017}, abstract = {The objectives of this study were to (i) describe soccer training (e.g., volume, types), anthropometry, body composition, and physical fitness and (0 compute associations between soccer training data and relative changes of anthropometry, body composition, and physical fitness during a soccer season in female elite young athletes. Seasonal training (i.e., day-to-day training volume/types) as well as variations in anthropometry (e.g., body height/mass), body composition (e.g., lean body/fat mass), and physical fitness (e.g., muscle strength/power, speed, balance) were collected from 17 female elite young soccer players (15.3 +/- 0.5 years) over the training periods (i.e., preparation, competition, transition) of a soccer season that resulted in the German championship title in under-17 female soccer. Training volume/types, anthropometrics, body composition, and physical fitness significantly varied over a soccer season. During the two preparation periods, higher volumes in resistance and endurance training were performed (2.00 <= d <= 18.15; p < 0.05), while higher sprint and tactical training volumes were applied during the two competition periods (2.22 <= d <= 11.18; p < 0.05). Body height and lean body mass increased over the season (2.50 <= d <= 3.39; p < 0.01). In terms of physical fitness, significant performance improvements were found over the soccer season in measures of balance, endurance, and sport-specific performance (2.52 <= d <= 3.95; p < 0.05). In contrast, no statistically significant changes were observed for measures of muscle power/endurance, speed, and change-of-direction speed. Of note, variables of muscle strength (i.e., leg extensors) significantly decreased (d = 2.39: p < 0.01) over the entire season. Our period specific sub analyses revealed significant performance improvements during the first round of the season for measures of muscle power/endurance, and balance (0.89 <= d <= 4.01; p < 0.05). Moreover, change-of-direction speed significantly declined after the first round of the season, i.e., transition period (d = 2.83; p < 0.01). Additionally, significant medium-to-large associations were observed between training and anthropometrics/body composition/physical fitness (-0.541 <= r <= 0.505). Soccer training and/or growth/maturation contributed to significant variations in anthropometry, body composition, and physical fitness outcomes throughout the different training periods over the course of a soccer season in female elite young soccer players. However, changes in components of fitness were inconsistent (e.g., power, speed, strength). Thus, training volume and/or types should be carefully considered in order to develop power-, speed- or strength-related fitness measures more efficiently throughout the soccer season.}, language = {en} } @article{GranacherBorde2017, author = {Granacher, Urs and Borde, Ron}, title = {Effects of Sport-Specific Training during the Early Stages of Long-Term Athlete Development on Physical Fitness, Body Composition, Cognitive, and Academic Performances}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.00810}, pages = {1 -- 11}, year = {2017}, abstract = {Introduction: Several sports demand an early start into long-term athlete development (LTAD) because peak performances are achieved at a relatively young age (e.g., gymnastics). However, the challenging combination of high training volumes and academic demands may impede youth athletes' cognitive and academic performances. Thus, the aims of this study were to examine the effects of a 1-year sport-specific training and/or physical education on physical fitness, body composition, cognitive and academic performances in youth athletes and their non-athletic peers. Methods: Overall, 45 prepubertal fourth graders from a German elite sport school were enrolled in this study. Participating children were either youth athletes from an elite sports class (n = 20, age 9.5 ± 0.5 years) or age-matched peers from a regular class (n = 25, age 9.6 ± 0.6 years). Over the 1-year intervention period, the elite sports class conducted physical education and sport-specific training (i.e., gymnastics, swimming, soccer, bicycle motocross [BMX]) during school time while the regular class attended physical education only. Of note, BMX is a specialized form of cycling that is performed on motocross tracks and affords high technical skills. Before and after intervention, tests were performed for the assessment of physical fitness (speed [20-m sprint], agility [star agility run], muscle power [standing long jump], flexibility [stand-and-reach], endurance [6-min-run], balance [single-leg stance]), body composition (e.g., muscle mass), cognitive (d2-test) and academic performance (reading [ELFE 1-6], writing [HSP 4-5], calculating [DEMAT 4]). In addition, grades in German, English, Mathematics, and physical education were documented. Results: At baseline, youth athletes showed better physical fitness performances (p < 0.05; d = 0.70-2.16), less relative body fat mass, more relative skeletal muscle mass (p < 0.01; d = 1.62-1.84), and similar cognitive and academic achievements compared to their non-athletic peers. Athletes' training volume amounted to 620 min/week over the 1-year period while their peers performed 155 min/week. After the intervention, significant differences were found in 6 out of 7 physical fitness tests (p < 0.05; d = 0.75-1.40) and in the physical education grades (p < 0.01; d = 2.36) in favor of the elite sports class. No significant between-group differences were found after the intervention in measures of body composition (p > 0.05; d = 0.66-0.67), cognition and academics (p > 0.05; d = 0.40-0.64). Our findings revealed no significant between-group differences in growth rate (deltas of pre-post-changes in body height and leg length). Discussion: Our results revealed that a school-based 1-year sport-specific training in combination with physical education improved physical fitness but did not negatively affect cognitive and academic performances of youth athletes compared to their non-athletic peers. It is concluded that sport-specific training in combination with physical education promotes youth athletes' physical fitness development during LTAD and does not impede their cognitive and academic development.}, language = {en} } @article{ThielePrieskeChaabeneetal.2020, author = {Thiele, Dirk and Prieske, Olaf and Chaabene, Helmi and Granacher, Urs}, title = {Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers}, series = {Journal of sports sciences}, volume = {38}, journal = {Journal of sports sciences}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0264-0414}, doi = {10.1080/02640414.2020.1745502}, pages = {1186 -- 1195}, year = {2020}, abstract = {The purpose of this systematic review with meta-analysis was to examine the effects of strength training (ST) on selected components of physical fitness (e.g., lower/upper limb maximal strength, muscular endurance, jump performance, cardiorespiratory endurance) and sport-specific performance in rowers. Only studies with an active control group were included if they examined the effects of ST on at least one proxy of physical fitness and/or sport-specific performance in rowers. Weighted and averaged standardized mean differences (SMD) were calculated using random-effects models. Subgroup analyses were computed to identify effects of ST type or expertise level on sport-specific performance. Our analyses revealed significant small effects of ST on lower limb maximal strength (SMD = 0.42, p = 0.05) and on sport-specific performance (SMD = 0.32, p = 0.05). Non-significant effects were found for upper limb maximal strength, upper/lower limb muscular endurance, jump performance, and cardiorespiratory endurance. Subgroup analyses for ST type and expertise level showed non-significant differences between the respective subgroups of rowers (p >= 0.32). Our systematic review with meta-analysis indicated that ST is an effective means for improving lower limb maximal strength and sport-specific performance in rowers. However, ST-induced effects are neither modulated by ST type nor rowers' expertise level.}, language = {en} } @article{PrieskeMuehlbauerMuelleretal.2013, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and M{\"u}ller, Steffen and Kr{\"u}ger, Tom and Kibele, Armin and Behm, David George and Granacher, Urs}, title = {Effects of surface instability on neuromuscular performance during drop jumps and landings}, series = {European journal of applied physiology}, volume = {113}, journal = {European journal of applied physiology}, number = {12}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-013-2724-6}, pages = {2943 -- 2951}, year = {2013}, abstract = {The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 \%, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 \%, p = 0.022, f = 0.72), and time for braking phase (12 \%, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 \%, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 \%, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces.}, language = {en} } @article{SandauGranacher2020, author = {Sandau, Ingo and Granacher, Urs}, title = {Effects of the barbell load on the acceleration phase during the snatch in elite Olympic weightlifting}, series = {Sports}, volume = {8}, journal = {Sports}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2075-4663}, doi = {10.3390/sports8050059}, pages = {10}, year = {2020}, abstract = {The load-depended loss of vertical barbell velocity at the end of the acceleration phase limits the maximum weight that can be lifted. Thus, the purpose of this study was to analyze how increased barbell loads affect the vertical barbell velocity in the sub-phases of the acceleration phase during the snatch. It was hypothesized that the load-dependent velocity loss at the end of the acceleration phase is primarily associated with a velocity loss during the 1st pull. For this purpose, 14 male elite weightlifters lifted seven load-stages from 70-100\% of their personal best in the snatch. The load-velocity relationship was calculated using linear regression analysis to determine the velocity loss at 1st pull, transition, and 2nd pull. A group mean data contrast analysis revealed the highest load-dependent velocity loss for the 1st pull (t = 1.85, p = 0.044, g = 0.49 [-0.05, 1.04]) which confirmed our study hypothesis. In contrast to the group mean data, the individual athlete showed a unique response to increased loads during the acceleration sub-phases of the snatch. With the proposed method, individualized training recommendations on exercise selection and loading schemes can be derived to specifically improve the sub-phases of the snatch acceleration phase. Furthermore, the results highlight the importance of single-subject assessment when working with elite athletes in Olympic weightlifting.}, language = {en} } @article{HortobagyiLesinskiGaebleretal.2015, author = {Hortob{\´a}gyi, Tibor and Lesinski, Melanie and G{\"a}bler, Martijn and VanSwearingen, Jessie M. and Malatesta, Davide and Granacher, Urs}, title = {Effects of three types of exercise interventions on healthy old adults' gait speed}, series = {Sports medicine}, volume = {45}, journal = {Sports medicine}, publisher = {Springer}, address = {Berlin}, issn = {1179-2035}, doi = {10.1007/s40279-015-0371-2}, pages = {1627 -- 1643}, year = {2015}, abstract = {Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 \% (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 \%; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 \%; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 \%, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset.}, language = {en} } @article{DelfanVahedBishopetal.2022, author = {Delfan, Maryam and Vahed, Alieh and Bishop, David and Juybari, Raheleh Amadeh and Laher, Ismail and Saeidi, Ayoub and Granacher, Urs and Zouhal, Hassane}, title = {Effects of two workload-matched high-intensity interval training protocols on regulatory factors associated with mitochondrial biogenesis in the soleus muscle of diabetic rats}, series = {Frontiers in Physiology}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2022.927969}, pages = {1 -- 12}, year = {2022}, abstract = {Aims: High intensity interval training (HIIT) improves mitochondrial characteristics. This study compared the impact of two workload-matched high intensity interval training (HIIT) protocols with different work:recovery ratios on regulatory factors related to mitochondrial biogenesis in the soleus muscle of diabetic rats. Materials and methods: Twenty-four Wistar rats were randomly divided into four equal-sized groups: non-diabetic control, diabetic control (DC), diabetic with long recovery exercise [4-5 × 2-min running at 80\%-90\% of the maximum speed reached with 2-min of recovery at 40\% of the maximum speed reached (DHIIT1:1)], and diabetic with short recovery exercise (5-6 × 2-min running at 80\%-90\% of the maximum speed reached with 1-min of recovery at 30\% of the maximum speed reached [DHIIT2:1]). Both HIIT protocols were completed five times/week for 4 weeks while maintaining equal running distances in each session. Results: Gene and protein expressions of PGC-1α, p53, and citrate synthase of the muscles increased significantly following DHIIT1:1 and DHIIT2:1 compared to DC (p ˂ 0.05). Most parameters, except for PGC-1α protein (p = 0.597), were significantly higher in DHIIT2:1 than in DHIIT1:1 (p ˂ 0.05). Both DHIIT groups showed significant increases in maximum speed with larger increases in DHIIT2:1 compared with DHIIT1:1. Conclusion: Our findings indicate that both HIIT protocols can potently up-regulate gene and protein expression of PGC-1α, p53, and CS. However, DHIIT2:1 has superior effects compared with DHIIT1:1 in improving mitochondrial adaptive responses in diabetic rats.}, language = {en} } @article{MadadiShadJafarnezhadgeroZagoetal.2019, author = {Madadi-Shad, Morteza and Jafarnezhadgero, Amir Ali and Zago, Matteo and Granacher, Urs}, title = {Effects of varus knee alignment on gait biomechanics and lower limb muscle activity in boys}, series = {Gait \& posture}, volume = {72}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2019.05.030}, pages = {69 -- 75}, year = {2019}, abstract = {Background: There is evidence that frontal plane lower limb malalignment (e.g., genu varus) is a risk factor for knee osteoarthritis development. However, only scarce information is available on gait biomechanics and muscle activity in boys with genu varus. Research question: To examine the effects of knee varus alignment on lower limb kinematics, kinetics and muscular activity during walking at self-selected speed in boys with genu varus versus healthy age-matched controls. Methods: Thirty-six boys were enrolled in this study and divided into a group of boys with genu varus (n = 18; age: 11.66 +/- 1.64 years) and healthy controls (n = 18; age: 11.44 +/- 1.78 years). Three-dimensional kinematics, ground reaction forces, loading rates, impulses and free moments of both limbs were recorded during five walking trials at self-selected speed. Surface electromyography was recorded for rectus femoris and vastus lateralis/medialis muscles. Results: No significant between-group differences were found for gait speed. Participants in the genu varus group versus controls showed larger peak knee flexion (p = 0.030; d = 0.77), peak knee adduction (p < 0.001; d = 1.63), and peak ankle eversion angles (p < 0.001; d = 2.06). Significantly higher peak ground reaction forces were found at heel contact (vertical [p = 0.002; d = 1.16] and posterior [p < 0.001; d = 1.63] components) and at push off (vertical [p = 0.010; d = 0.93] and anterior [p < 0.001; d = 1.34] components) for genu varus versus controls. Peak medial ground reaction force (p = 0.032; d = 0.76), vertical loading rate (p < 0.001; d = 1.52), anterior-posterior impulse (p = 0.011; d = 0.92), and peak negative free moment (p = 0.030; d = 0.77) were significantly higher in genu varus. Finally, time to reach peak forces was significantly shorter in genu varus boys compared with healthy controls (p < 0.01; d = 0.73-1.60). The genu varus group showed higher activities in vastus lateralis (p < 0.001; d = 1.82) and vastus medialis (p = 0.013; d = 0.90) during the loading phase of walking. Significance: Our study revealed genu varus specific gait characteristics and muscle activities. Greater knee adduction angle in genu varus boys may increase the load on the medial compartment of the knee joint. The observed characteristics in lower limb biomechanics and muscle activity could play a role in the early development of knee osteoarthritis in genu varus boys.}, language = {en} } @article{HelmPrieskeMuehlbaueretal.2018, author = {Helm, Norman and Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Granacher, Urs}, title = {Effects of judo-specific resistance training on kinetic and electromyographic parameters of pulling exercises in judo athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {32}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0043-122781}, pages = {134 -- 142}, year = {2018}, abstract = {Background In judo, rapid force production during pulling movements is an important component of athletic performance, which is why this capacity needs to be specifically exercised in judo. This study aimed at examining the effects of a judo-specific resistance training program using a judo ergometer system (PTJ) versus a traditional resistance training regime using a partner (PTP) on kinetics and muscle activity of judo-specific pulling exercises. Method Twenty-four male judo athletes (age: 22 +/- 4 years, training experience: 15 +/- 3 years) were randomly assigned to two groups. In a crossover design, the first group completed a 4-week PTJ followed by four weeks of PTP (each with three sessions per week). The second group conducted PTP prior to PTJ. PTJ and PTP were completed in addition to regular training. Before, 4 weeks and 8 weeks after training, tests were conducted to assess judo-specific pulling kinetics (i.e. maximal force, rate of force development [RFD], mechanical work) and electromyographic (EMG) shoulder/trunk muscle activity (i.e. biceps brachii muscle, deltoid muscle, trapezius muscle, erector spinae muscle) during pulling movements using a judo ergometer as well as unspecific strength tests (i.e. bench-pull, pull-ups). Results The statistical analysis revealed that in both groups ergometer pulling kinetics (p<.05, 0.83 <= d <= 1.77) and EMG activity (p<.05; 1.07 <= d <= 2.25) were significantly enhanced following 8 weeks of training. In addition, significantly larger gains in RFD, mechanical work, and EMG activity (i.e. deltoid muscle, erector spinae muscle, trapezius muscle) were found following PTJ compared to PTP (p<.05, 1.25 <= d <= 2.79). No significant enhancements were observed with the unspecific strength tests. Conclusion Our findings indicate that PTJ is superior to PTP regarding training-induced improvements in force production and muscle activity during judo-specific pulling exercises. Performance enhancements may partly be attributed to neural adaptations. No transfer effects on unspecific strength tests were detected following PTJ and PTP.}, language = {de} } @article{JafarnezhadgeroFatollahiGranacher2022, author = {Jafarnezhadgero, Amir Ali and Fatollahi, Amir and Granacher, Urs}, title = {Eight weeks of exercising on sand has positive effects on biomechanics of walking and muscle activities in individuals with pronated feet}, series = {Sports : open access journal}, volume = {10}, journal = {Sports : open access journal}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2075-4663}, doi = {10.3390/sports10050070}, pages = {16}, year = {2022}, abstract = {This study aimed to investigate the effects of eight weeks of barefoot running exercise on sand versus control on measures of walking kinetics and muscle activities in individuals with diagnosed pronated feet. Sixty physically active male adults with pronated feet were randomly allocated into an intervention or a waiting control group. The intervention group conducted an 8-weeks progressive barefoot running exercise program on sand (e.g., short sprints) with three weekly sessions. Pre and post intervention, participants walked at a constant speed of 1.3 m/s +/- 5\% on a 18 m walkway with a force plate embedded in the middle of the walkway. Results showed significant group-by-time interactions for peak impact vertical and lateral ground reaction forces. Training but not control resulted in significantly lower peak impact vertical and lateral ground reaction forces. Significant group-by-time interactions were observed for vastus lateralis activity during the loading phase. Training-induced increases were found for the vastus lateralis in the intervention but not in the control group. This study revealed that the applied exercise program is a suitable means to absorb ground reaction forces (e.g., lower impact vertical and lateral peaks) and increase activities of selected lower limb muscles (e.g., vastus lateralis) when walking on stable ground.}, language = {en} } @article{AlbertOwolabiGebeletal.2020, author = {Albert, Justin Amadeus and Owolabi, Victor and Gebel, Arnd and Brahms, Clemens Markus and Granacher, Urs and Arnrich, Bert}, title = {Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20185104}, pages = {22}, year = {2020}, abstract = {Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people.}, language = {en} } @article{HortobagyiGranacherFernandezdelOlmoetal.2020, author = {Hortobagyi, Tibor and Granacher, Urs and Fernandez-del-Olmo, Miguel and Howatson, Glyn and Manca, Andrea and Deriu, Franca and Taube, Wolfgang and Gruber, Markus and Marquez, Gonzalo and Lundbye-Jensen, Jesper and Colomer-Poveda, David}, title = {Functional relevance of resistance training-induced neuroplasticity in health and disease}, series = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, volume = {122}, journal = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0149-7634}, doi = {10.1016/j.neubiorev.2020.12.019}, pages = {79 -- 91}, year = {2020}, abstract = {Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease.}, language = {en} } @article{GschwindBridenbaughReinhardetal.2017, author = {Gschwind, Yves J. and Bridenbaugh, Stephanie A. and Reinhard, Sarah and Granacher, Urs and Monsch, Andreas U. and Kressig, Reto W.}, title = {Ginkgo biloba special extract LI 1370 improves dual-task walking in patients with MCI: a randomised, double-blind, placebo-controlled exploratory study}, series = {Aging clinical and experimental research}, volume = {29}, journal = {Aging clinical and experimental research}, publisher = {Springer}, address = {New York}, issn = {1594-0667}, doi = {10.1007/s40520-016-0699-y}, pages = {609 -- 619}, year = {2017}, abstract = {Background In patients with mild cognitive impairment (MCI), gait instability, particularly in dual-task situations, has been associated with impaired executive function and an increased fall risk. Ginkgo biloba extract (GBE) could be an effective mean to improve gait stability. Aims This study investigated the effect of GBE on spatiotemporal gait parameters of MCI patients while walking under single and dual-task conditions. Methods Fifty patients aged 50-85 years with MCI and associated dual-task-related gait impairment participated in this randomised, double-blind, placebo-controlled, exploratory phase IV drug trial. Intervention group (IG) patients received GBE (Symfona (R) forte 120 mg) twice-daily for 6 months while control group (CG) patients received placebo capsules. A 6-month open-label phase with identical GBE dosage followed. Gait was quantified at months 0, 3, 6 and 12. Results After 6 months, dual-task-related cadence increased in the IG compared to the CG (p = 0.019, d = 0.71). No significant changes, but GBE-associated numerical non-significant trends were found after 6-month treatment for dual-task-related gait velocity and stride time variability. Discussion Findings suggest that 120 mg of GBE twice-daily for at least 6 months may improve dual-task-related gait performance in patients with MCI. Conclusions The observed gait improvements add to the understanding of the self-reported unspecified improvements among MCI patients when treated with standardised GBE.}, language = {en} } @article{ChaouachiBenOthmanMakhloufetal.2019, author = {Chaouachi, Anis and Ben Othman, Aymen and Makhlouf, Issam and Young, James D. and Granacher, Urs and Behm, David George}, title = {Global Training Effects of Trained and Untrained Muscles With Youth Can be Maintained During 4 Weeks of Detraining}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {33}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {10}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002606}, pages = {2788 -- 2800}, year = {2019}, abstract = {Global (whole-body) effects of resistance training (i.e., cross-education) may be pervasive with children. Detraining induces less substantial deficits with children than adults. It was the objective of this study to investigate the global responses to 4 weeks of detraining after 8 weeks of unilateral leg press (LP) training in 10-13-year-old, pre-peak-height-velocity stage boys. Subjects were randomly separated into 2 unilateral resistance training groups (high load/low repetitions [HL-LR] and low load/high repetitions [LL-HR], and control group). Assessments at pre-training, post-training, and detraining included dominant and nondominant limbs, unilateral, 1 repetition maximum (1RM) and 60\% 1RM LP, knee extension, knee flexion, elbow flexion, and handgrip maximal voluntary isometric contraction (MVIC), and countermovement jump (CMJ). All measures significantly increased from pre-test to detraining for both training programs, except for elbow flexion MVIC with increases only with HL-LR. All measures except CMJ and handgrip MVIC significantly decreased from post-test to detraining, except for elbow flexion MVIC with decreases only with HL-LR. The dominant trained limb experienced significantly greater LP improvements (pre- to detraining) and decrements (post- to detraining) with LP 1RM and 60\% 1RM LP. In conclusion, youth HL-LR and LL-HR global training effects of trained and untrained limbs demonstrate similar benefits (pre- to detraining) and decrements (post- to detraining) with detraining. The findings emphasize that training any muscle group in a child can have positive global implications for improved strength and power that can persist over baseline measures for at least a month.}, language = {en} } @article{JafarnezhadgeroFatollahiAmirzadehetal.2019, author = {Jafarnezhadgero, Amir Ali and Fatollahi, Amir and Amirzadeh, Nasrin and Siahkouhian, Marefat and Granacher, Urs}, title = {Ground Reaction Forces and Muscle Activity While Walking on Sand versus Stable Ground in Individuals with Pronated Feet Compared with Healthy Controls}, series = {PloS ONe}, volume = {9}, journal = {PloS ONe}, number = {14}, publisher = {PloS ONe}, address = {San Francisco, California}, issn = {1932-6203}, doi = {10.1371/journal.pone.0223219}, pages = {15}, year = {2019}, abstract = {Background Sand is an easy-to-access, cost-free resource that can be used to treat pronated feet (PF). Therefore, the aims of this study were to contrast the effects of walking on stable ground versus walking on sand on ground reaction forces (GRFs) and electromyographic (EMG) activity of selected lower limb muscles in PF individuals compared with healthy controls. Methods Twenty-nine controls aged 22.2±2.5 years and 30 PF individuals aged 22.2±1.9 years were enrolled in this study. Participants walked at preferred speed and in randomized order over level ground and sand. A force plate was included in the walkway to collect GRFs. Muscle activities were recorded using EMG system. Results No statistically significant between-group differences were found in preferred walking speed when walking on stable ground (PF: 1.33±0.12 m/s; controls: 1.35±0.14 m/s; p = 0.575; d = 0.15) and sand (PF: 1.19±0.11 m/s; controls: 1.23±0.18 m/s; p = 0.416; d = 0.27). Irrespective of the group, walking on sand (1.21±0.15 m/s) resulted in significantly lower gait speed compared with stable ground walking (1.34±0.13 m/s) (p<0.001; d = 0.93). Significant main effects of "surface" were found for peak posterior GRFs at heel contact, time to peak for peak lateral GRFs at heel contact, and peak anterior GRFs during push-off (p<0.044; d = 0.27-0.94). Pair-wise comparisons revealed significantly smaller peak posterior GRFs at heel contact (p = 0.005; d = 1.17), smaller peak anterior GRFs during push-off (p = 0.001; d = 1.14), and time to peak for peak lateral GRFs (p = 0.044; d = 0.28) when walking on sand. No significant main effects of "group" were observed for peak GRFs and their time to peak (p>0.05; d = 0.06-1.60). We could not find any significant group by surface interactions for peak GRFs and their time to peak. Significant main effects of "surface" were detected for anterior-posterior impulse and peak positive free moment amplitude (p<0.048; d = 0.54-0.71). Pair-wise comparisons revealed a significantly larger peak positive free moment amplitude (p = 0.010; d = 0.71) and a lower anterior-posterior impulse (p = 0.048; d = 0.38) when walking on sand. We observed significant main effects of "group" for the variable loading rate (p<0.030; d = 0.59). Pair-wise comparisons revealed significantly lower loading rates in PF compared with controls (p = 0.030; d = 0.61). Significant group by surface interactions were observed for the parameter peak positive free moment amplitude (p<0.030; d = 0.59). PF individuals exhibited a significantly lower peak positive free moment amplitude (p = 0.030, d = 0.41) when walking on sand. With regards to EMG, no significant main effects of "surface", main effects of "group", and group by surface interactions were observed for the recorded muscles during the loading and push-off phases (p>0.05; d = 0.00-0.53). Conclusions The observed lower velocities during walking on sand compared with stable ground were accompanied by lower peak positive free moments during the push-off phase and loading rates during the loading phase. Our findings of similar lower limb muscle activities during walking on sand compared with stable ground in PF together with lower free moment amplitudes, vertical loading rates, and lower walking velocities on sand may indicate more relative muscle activity on sand compared with stable ground. This needs to be verified in future studies.}, language = {en} }